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a b s t r a c t

We usemultinomial values to study the effects of the partnership formation in cooperative
games, comparing the joint effect on the involved players with the alternative alliance for-
mation. The simple game case is especially considered and the application to the Catalonia
Parliament (Legislature 2003–2007) is also studied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The notion of coalition of partners or partnership – as it will be called here – was introduced in [16]. In [3] the signifi-
cance and scope of this concept were emphasized, first in cooperative games and later on for simple games, and the natural
way to impose partnerships in a given game by means of commitments between players was also suggested. In the present
paper we focus on a subfamily of probabilistic values calledmultinomial (probabilistic) values. These values were introduced
in reliability by Puente [20] (see also [15]) with the name of ‘‘multibinary probabilistic values’’. They were independently
defined by Carreras [4], for simple games only – i.e. as power indices – in a work on decisiveness where they were called
‘‘Banzhaf α-indices’’. Recently, Carreras and Puente [11] have given two characterizations of the multinomial values within
the class of probabilistic values: one for each value and another for the whole family.

For more than a decade, our research group has been studying semivalues, a subfamily of probabilistic values introduced
byDubey et al. [14], characterized by anonymity, and including the Shapley value as the only efficient member. In the analysis
of certain cooperative problems we have successfully used binomial semivalues [20] that include the Banzhaf value intro-
duced by Owen [17].1 From this experience, we feel that multinomial values (n parameters, n being the number of players)
offer a deal of flexibility clearly greater than binomial semivalues (one parameter) and hence many more possibilities to
introduce additional information when evaluating a game.

The aim of this paper is the application of multinomial values to study the effects of the partnership formation. Our first
goal is to investigate how these values aremodified if several players agree to form a partnership and generalize the previous
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results found by using binomial semivalues in [10]. Our second goal is the study of a real life political instance: the Catalonia
Parliament during the Legislature 2003–2007.

The organization of the paper is then as follows. In Section 2, aminimumof preliminaries is provided. In Section 3, general
statements for cooperative games are first given and concern the variation of the multinomial values, when a partnership
is formed, and refer to (a) inner players and (b) outside players; next, a comparison is established between the multinomial
values of the coalition as (i) a partnership and (ii) an alliance. In Section 4, we analyze partnerships in simple games: in this
case, we determine themaximum andminimumvalues of the differences found for anymultinomial value in the three cases
mentioned above and supply games where these extreme values are attained. Proofs of the statements in Sections 3 and 4
will be found in Appendices A and B, respectively. Section 5 contains the analysis of the Catalonia Parliament if a partnership
is formed. Finally, Section 6 states some conclusions.

2. Preliminaries

Let N = {1, 2, . . . , n} denote a finite set of players. A cooperative game in N is a function v : 2N
→ R, which assigns a real

number v(S) to each coalition S ⊆ N and satisfies v(∅) = 0. A game v is monotonic if v(S) ≤ v(T ) whenever S ⊂ T ⊆ N .
Player i ∈ N is a dummy in v if v(S ∪ {i}) = v(S) + v({i}) for all S ⊆ N\{i}, and null in v if, moreover, v({i}) = 0. Players
i, j ∈ N are symmetric in v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}. For example, if ∅ ≠ S ⊆ N , the unanimity game
uS is defined by uS(T ) = 1 if S ⊆ T and uS(T ) = 0 otherwise. In this monotonic game, every j ∉ S is a null player and all
members of S are symmetric players. The vector space of all games in N will be denoted as GN . Finally, every permutation θ
of N induces a linear automorphism of GN given by (θv)(S) = v(θ−1S) for all S ⊆ N and all v.

2.1. Probabilistic values

Following Weber’s [23] axiomatic definition, φ : GN → RN is a (group) probabilistic value iff it satisfies the following
properties:

(i) linearity: φ[v + v′
] = φ[v] + φ[v′

] and φ[λv] = λφ[v] for all v, v′
∈ GN and λ ∈ R;

(ii) positivity2: if v is monotonic, then φ[v] ≥ 0;
(iii) dummy player property: if i ∈ N is a dummy in game v, then φi[v] = v({i}).

There is an interesting characterization of the probabilistic values, also in [23]: (a) given a set of n2n−1 weighting coeffi-
cients {piS : i ∈ N, S ⊆ N\{i}} such that


S⊆N\{i} p

i
S = 1 for each i ∈ N and piS ≥ 0 for all i ∈ N and S ⊆ N\{i}, the expression

φi[v] =


S⊆N\{i}

piS[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN (1)

defines a probabilistic value φ on N; (b) conversely, every probabilistic value can be obtained in this way; (c) the correspon-
dence given by {piS : i ∈ N, S ⊆ N\{i}} → φ is one-to-one.

Thus, the payoff that a probabilistic value allocates to every player in any game is a weighted sum of his marginal
contributions in the game. We quote from [23]:

‘‘Let player i view his participation in a game v as consisting merely of joining some coalition S and then receiving as
a reward his marginal contribution to the coalition. If piS is the probability that he joins coalition S, then φi[v] is his
expected payoff from the game’’.

Among the probabilistic values, semivalues, introduced by Dubey et al. [14], are characterized by the anonymity property:
φθ i[θv] = φi[v] for all i ∈ N , v ∈ GN and θ , permutation on N . Alternatively, this is equivalent to saying that, if n = |N|,
there is a vector {ps}n−1

s=0 such that piS = ps for all i ∈ N and all S ⊆ N\{i}, where s = |S|, so that all coalitions of a given size
share a common weight that applies to all (external) players, and hence Eq. (1) reduces to

φi[v] =


S⊆N\{i}

ps[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

The weighting coefficients {ps}n−1
s=0 of any semivalue φ satisfy therefore two characteristic conditions:

each ps ≥ 0 and
n−1
s=0


n − 1

s


ps = 1.

Well-known examples of semivalues are the Shapley value ϕ [21], for which ps = 1/n


n−1
s


, and the Banzhaf value

β [17], for which ps = 21−n. The Shapley value ϕ is the only efficient semivalue, in the sense that


i∈N ϕi[v] = v(N) for
every v ∈ GN . Note that these two classical values are defined for each N .

2 In [23] this property is calledmonotonicity, but we prefer to call to it positivity as in [14].
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