
MONACO—A domain-specific language solution for reactive
process control programming with hierarchical components

Herbert Prähofer n, Roland Schatz, Christian Wirth, Dominik Hurnaus,
Hanspeter Mössenböck
Johannes Kepler University Linz, Christian Doppler Laboratory of Automated Software Engineering, Institute for Systems Software,
Altenbergerstrasse 69, A-4040 Linz, Austria

a r t i c l e i n f o

Article history:
Received 7 March 2012
Received in revised form
21 September 2012
Accepted 25 February 2013
Available online 16 March 2013

Keywords:
Domain-specific languages
Automation control
Reactive programming
Component-based systems

a b s t r a c t

In this paper, we present MONACO – a domain-specific language for developing event-based,
reactive process control programs – and its visual interactive programming environment. The
main purpose of the language is to bring process control programming closer to domain
experts. Important design goals have therefore been to keep the language concise and to allow
programs to be written that reflect the perceptions of domain experts. MONACO is similar to
Statecharts in its expressive power, but adopts an imperative notation. Moreover, MONACO uses a
state-of-the-art component approach with interfaces and polymorphic implementations, and
enforces strict hierarchical component architectures that support hierarchical abstraction of
control functionality. We present the main design goals, the essential programming elements,
the visual interactive programming environment, results from industrial case studies, and a
formal definition of the semantics of the reactive behavior of MONACO programs in the form of
labeled transition systems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for languages and tools that support domain experts in implementing process control solutions is increasing
[1–3]. In industrial automation, domain experts commonly extend and adapt their control solutions to fulfill the specific
requirements at hand. They must intervene in safety-critical, highly dependable systems and are often expected to alter
programs while the machine is in operation and to make these changes effective at run time using online-change
capabilities. However, domain experts usually lack “deep” software engineering skills and expertise, requiring programming
environments to provide extensive support, guidance, and supervision.

Domain-specific languages (DSLs) [4] are a proven approach to bringing programming closer to application domains. They aim
to present software in the notations of domain experts and allow a straightforward mapping of application concepts to software
solutions. Many domain-specific languages and modeling approaches have emerged in the automation domain [5–8]. For example,
domain-specific modeling systems for specifying control behavior in the form of function block diagrams [8–10] have been very
successful and can be considered state-of-the-art. Specifying reactive behavior, however, has proved to be more challenging. In this
context, the Statecharts formalism [11,12], and its derivatives (e.g. [13,14]) are widely used for expressing complex reactive system
behavior, but these modeling approaches target software engineering experts rather than domain experts.

Therefore, we have developed a new DSL called MONACO (Modular NOtation for Automation COntrol), the goal of which is to
allow implementation of event-based, reactive process control programs in a concise and intuitive manner. The context of this work
is a collaboration with Keba AG (www.keba.com), a medium-sized company developing and producing hardware and software

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

1477-8424/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cl.2013.02.001

n Corresponding author. Tel.: þ43 732 2486 4352.
E-mail addresses: herbert.praehofer@jku.at, herbert.praehofer@gmail.com (H. Prähofer).

Computer Languages, Systems & Structures 39 (2013) 67–94

www.keba.com
www.elsevier.com/locate/cl
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2013.02.001
http://dx.doi.org/10.1016/j.cl.2013.02.001
http://dx.doi.org/10.1016/j.cl.2013.02.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cl.2013.02.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cl.2013.02.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cl.2013.02.001&domain=pdf
mailto:herbert.praehofer@jku.at
mailto:herbert.praehofer@gmail.com
http://dx.doi.org/10.1016/j.cl.2013.02.001
http://dx.doi.org/10.1016/j.cl.2013.02.001


platforms and solutions for industrial automation. In their practice, development of automation solutions is a multi-stage process
involving various stakeholders at different stages of the automation process with varying levels of programming knowledge and
capabilities:

� Keba develops and produces a hardware and software platform with associated tool support.
� The hardware and software platforms enable Keba customers (mainly OEMs of manufacturing machines) to realize

automation systems for their products. Employees of OEMs, however, are often domain experts with limited software
engineering capabilities.

� OEMs also build customizable software systems and electronic control panels for use by machine operators who act as
end user programmers.

The MONACO language is specialized to a rather narrow subfield of the automation domain, that is, programming control
sequence operations of manufacturing machines. This narrow domain includes all types of automated machines, but
excludes bigger automation systems such as whole manufacturing plants. Within the numerous layers of automation
systems MONACO is designed to address the layer of event-based control of machine operations between the lower-level
continuous control and signal processing layer and the higher-level manufacturing execution layer.

MONACO has been designed to allow the programming of sequences of control operations, to enable parallel activities, and to
provide strong support for dealing with exceptions. In its expressive power, MONACO is therefore similar to Statecharts, but adopts an
imperative notation similar to other languages in the domain [15]. Most importantly, however, MONACO's distinguishing feature is its
hierarchical component approach, which allows building automation solutions in an arrangement of upper and subordinate
components. Thus, it supports abstraction of reactive control behavior in several hierarchical layers and building reusable
components. Hierarchical abstraction of control tasks results in simplifications that bring control programs closer to the perceptions
of domain experts.

1.1. Contributions

This paper makes the following contributions:

− It introduces MONACO as a novel programming language with a state-of-the-art component approach for programming
reactive control systems. We show that its expressive power is similar to that of Statecharts. MONACO, additionally
combines reactive system programming elements with an imperative programming notation and approved language
concepts from structured programming.

− It shows that the MONACO language allows implementing control programs in a concise way. In particular, we show how
the aligned language features of MONACO facilitate hierarchical abstraction of control functionality.

− We show that MONACO's small set of language elements is both expressive and intuitive. In particular, we demonstrate that MONACO

is capable of expressing complex reactive control functionality in a way that coincides closely with domain expert perceptions.
− We show a simple visualization scheme and the interactive development environment for MONACO programs which

makes MONACO control programs even more appealing to domain experts.
− We give a formal definition of the semantics of the reactive behavior of MONACO programs in the form of labeled transition

systems.

The MONACO language and its visual notation were first published in [16,17], respectively. This paper subsumes and
extends this work by providing a detailed presentation of the language, giving a formal definition of the semantics of the
language, and presenting results from implementation and case studies.

1.2. Paper outline

The outline of this paper is as follows: Section 2 discusses principal ideas for the design of the language. Section 3
introduces the main language elements of MONACO. Section 4 demonstrates how hierarchical control programs can be built
using an example control program for an injection molding machine. In Section 5 the interactive visual programming
environment is presented. In Section 6 we give a formal definition of the reactive behavior of MONACO programs. Section 7
discusses implementation and results from industrial case studies. Section 8 compares the approach to related work, and
Section 9 concludes with a summary and an overview of follow-up work.

2. Main ideas

In discussions with domain experts at our industrial partners, we learned how they conceptualize automation machines.
From these findings, we derived the following language design features:

Imperative notation: The main motivation for designing a new notation for event-based control systems instead of using,
for example, the well-established Statecharts formalism was the observation that domain experts think in sequences of
control tasks and their coordination rather than in states and state transitions. Further, we observed that in normal

H. Prähofer et al. / Computer Languages, Systems & Structures 39 (2013) 67–9468



Download English Version:

https://daneshyari.com/en/article/418350

Download Persian Version:

https://daneshyari.com/article/418350

Daneshyari.com

https://daneshyari.com/en/article/418350
https://daneshyari.com/article/418350
https://daneshyari.com

