
Maintaining distributed logic programs incrementally

Vivek Nigam a,n, Limin Jia b, Boon Thau Loo c, Andre Scedrov c

a Ludwig-Maximilians-Universität, Germany
b Carnegie Mellon University, USA
c University of Pennsylvania, USA

a r t i c l e i n f o

Article history:

Received 27 October 2011

Received in revised form

8 February 2012

Accepted 10 February 2012
Available online 17 February 2012

Keywords:

Declarative Networking

Correctness

Logic Programming

Distributed Datalog

a b s t r a c t

Distributed logic programming languages, which allow both facts and programs to be

distributed among different nodes in a network, have been recently proposed and used to

declaratively program a wide-range of distributed systems, such as network protocols and

multi-agent systems. However, the distributed nature of the underlying systems poses

serious challenges to developing efficient and correct algorithms for evaluating these

programs. This paper proposes an efficient asynchronous algorithm to compute incremen-

tally the changes to the states in response to insertions and deletions of base facts. Our

algorithm is formally proven to be correct in the presence of message reordering in the

system. To our knowledge, this is the first formal proof of correctness for such an algorithm.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most exciting developments in computer science in recent years is that computing has become increasingly
distributed. Both resources and computation no longer reside in a single place. Resources can be stored in different
machines possibly around the world, and computation can also be performed by different machines, e.g. cloud computing.
Since machines usually run asynchronously and under very different environments, programming computer artifacts in
such frameworks has become increasingly difficult as programs have to be at the same time correct, readable, efficient and
portable. There has, therefore, been a recent return to using declarative programming languages, based on Prolog and
Datalog, to program distributed systems such as networks and multi-agent robotic systems, e.g. Network Datalog (NDlog)
[10], MELD [5], Netlog [6], DAHL [12], Dedalus [4]. When programming in these declarative languages, programmers
usually do not need to specify how computation is done, but rather what is to be computed. Therefore declarative
programs tend to be more readable, portable, and orders of magnitude smaller than their imperative counterparts.

Distributed systems, such as networking and multi-agent robotic systems, deal at their core with maintaining states by
allowing each node (agent) to compute locally and then propagate its local states to other nodes in the system. For
instance, in routing protocols, at each iteration each node computes locally its routing tables based on information it has
gained so far, then distributes the set of derived facts to its neighbors. We can specify these systems as distributed logic
programs, where the base facts as well as the rules are distributed among different nodes in the network.

Similar to its centralized counterparts, one of the main challenges of implementing these distributed logic programs is to
efficiently and correctly update them when the base facts change. For distributed systems, the communication costs due to
updates also need to be taken into consideration. For instance, in the network setting, when a new link in the network has been
established or an old link has been broken, the set of derived routes need to be updated to reflect the changes in the base facts.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

1477-8424/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cl.2012.02.001

n Corresponding author. Tel.: þ49 89 21 80 93 37.

E-mail addresses: vivek.nigam@ifi.lmu.de (V. Nigam), liminjia@cmu.edu (L. Jia), boonloo@cis.upenn.edu (B.T. Loo),

scedrov@math.upenn.edu (A. Scedrov).

Computer Languages, Systems & Structures 38 (2012) 158–180

www.elsevier.com/locate/cl
www.elsevier.com/locate/cl
dx.doi.org/10.1016/j.cl.2012.02.001
mailto:vivek.nigam@ifi.lmu.de
mailto:liminjia@cmu.edu
mailto:boonloo@cis.upenn.edu
mailto:scedrov@math.upenn.edu
dx.doi.org/10.1016/j.cl.2012.02.001
dx.doi.org/10.1016/j.cl.2012.02.001


It is impractical to re-compute each node’s state from scratch when changes occur, since that would require all nodes to
exchange their local states including those that have been previously propagated.

A better approach is to maintain the state of distributed logic programs incrementally. Instead of reconstructing the
entire state, one only modifies previously derived facts that are affected by the changes of the base facts, while the
remaining facts are left untouched. For typical network protocols, updates to the base facts are caused by topology
changes, and these changes are small compared to the size of the entire network, but happen quite often. Therefore,
whenever a link update happens, incremental recomputation requires less bandwidth and results in much faster protocol
convergence times when compared to recomputation from scratch. (We compare incremental approach to recomputation
in more detail at the end of Section 2.3.)

This paper develops algorithms for incrementally maintaining recursive logic programs in a distributed setting. Our
algorithms allow asynchronous execution among agents. No agent needs to stop computing because some other agent has
not concluded its computation. Synchronization requires extra communication between agents, which comes at a huge
performance penalty. In addition, we also allow update messages to be received out of order. We do not assume the
existence of a coordinator in the system, which matches the reality of distributed systems. Finally, we develop techniques
that ensure the termination of updates even in the presence of recursive logic programs.

More concretely, we propose an asynchronous incremental logic programming maintenance algorithm, based on the
pipelined semi-naı̈ve(PSN) evaluation strategy proposed by Loo et al. [10]. PSN relaxes the traditional semi-naı̈ve (SN)
evaluation strategy for Datalog by allowing an agent to change its local state by following a local pipeline of update
messages. These messages specify the insertions and deletions scheduled to be performed to the agents’ local state. When
an update is processed, new updates may be generated and those that have to be processed by other agents of the system
are transmitted accordingly.

We discovered that existing PSN algorithms [10,9] may produce incorrect results if the messages are received out of
order. We propose a new PSN algorithm and formally prove its correctness. Up to our knowledge, this is the first formal
proof for such an algorithm under the assumption that messages can be received out of order. What makes the problem
hard is that we need to show that, in a distributed, asynchronous setting, the state computed by our algorithm is correct
regardless of the order in which updates are processed. Unlike prior PSN proposals [10,9], our algorithm does not require
that message channels be FIFO, which is for many distributed systems an unrealistic assumption.

Guaranteeing termination is another challenge for developing an incremental maintenance algorithm for distributed recursive
logic programs. Typically, in a centralized synchronous setting, algorithms, such as DRed [7], guarantee the termination of updates
caused by insertion by maintaining the set of derivable facts, and discarding new derivations of previously derived facts. However,
to handle updates caused by deletion properly, DRed [7] first deletes all facts that could be derived using a deleted base fact, then
DRed re-derives any deleted fact that has an alternative derivation. Re-derivation incurs communication costs, which degrade the
performance in a distributed setting. This argues for maintaining the multiset of derivable facts, where no re-derivation of facts is
needed, since nodes keep track of all possible derivations for any fact. However, termination is no longer guaranteed, as cycles in
the derivation of recursive programs allow facts to be supported by infinitely many derivations.

To tackle this problem, we adapt an existing centralized solution [14] to distributed settings. For any given fact, we add
annotations containing the set of base and intermediate facts used to derive that fact. These per-fact annotations are then
used to detect cycles in derivations. We formally prove that in a distributed setting, the annotations are enough to detect
when facts are supported by infinitely many derivations and guarantee termination of our algorithm.

This paper makes the following technical contributions, after introducing some basic definitions in Section 2:

� We propose a new PSN-algorithm to maintain distributed logic programs incrementally (Section 3). This algorithm only
deals with distributed non-recursive logic programs. (Recursive programs are dealt in Section 5.)
� We formally prove that PSN is correct (Section 4). Instead of directly proving PSN maintains distributed logic programs

correctly, we construct our proofs in two steps. First, we define a synchronous algorithm based on SN evaluations, and
prove the synchronous SN algorithm is correct. Then, we show that any PSN execution computes the same result as the
synchronous SN algorithm.
� We extend the basic algorithm by annotating each fact with information about its derivation to ensure the termination

of maintaining distributed states (Section 5), and prove its correctness.
� We point out the limitations of existing maintenance algorithms in a distributed setting where channels are not

necessarily FIFO (Section 6) and comment on related work (Section 7).

Finally, we conclude with some final remarks in Section 8. This is an extended and revised version of the conference
paper [15].

2. Distributed Datalog

We present Distributed Datalog (DDlog), which extends Datalog programs by allowing Datalog rules to be distributed
among different nodes. DDlog is the core sublanguage common to many of the distributed Datalog languages, such as
NDlog[10], MELD [5], Netlog [6], and Dedalus [4]. Our algorithms maintain the states for DDlog programs.

V. Nigam et al. / Computer Languages, Systems & Structures 38 (2012) 158–180 159



Download English Version:

https://daneshyari.com/en/article/418388

Download Persian Version:

https://daneshyari.com/article/418388

Daneshyari.com

https://daneshyari.com/en/article/418388
https://daneshyari.com/article/418388
https://daneshyari.com

