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a b s t r a c t

We present deterministic approximation algorithms for the multi-criteria maximum
traveling salesman problem (Max-TSP). Our algorithms are faster and simpler than the
existing randomized algorithms.

We devise algorithms for the symmetric and asymmetric multi-criteria Max-TSP that
achieve ratios of 1/2k − ε and 1/(4k − 2) − ε, respectively, where k is the number of
objective functions. For two objective functions, we obtain ratios of 3/8−ε and 1/4−ε for
the symmetric and asymmetric TSP, respectively. Our algorithms are self-contained and do
not use existing approximation schemes as black boxes.

© 2012 Elsevier B.V. All rights reserved.

1. Multi-criteria TSP

An instance of the traveling salesman problem (TSP) is a complete graph G = (V , E)with edge weightsw : E → Q+. The
goal is to find aHamiltonian cycle (also called a tour) of minimum ormaximumweight, where theweight of a tour is the sum
of its edge weights. (The weight of an arbitrary set of edges is defined analogously.) If G is undirected, we haveMin-STSP and
Max-STSP (symmetric TSP). If G is directed, we haveMin-ATSP andMax-ATSP (asymmetric TSP). ForMin-ATSP andMin-STSP,
we assume that the edge weights fulfill the triangle inequality, since otherwise the two problems cannot be approximated
at all (assuming P ≠ NP). All these variants of TSP are NP-hard and APX-hard [3]. Thus, we are in need of approximation
algorithms. Table 1 shows the currently best approximation ratios for the four variants of the TSP.

In many scenarios, however, there is more than one objective function to optimize. In case of the TSP, we might want to
minimize travel time, expenses, number of flight changes, etc., while we want to maximize, e.g., our profit along the route.
This gives rise tomulti-criteria TSP, where Hamiltonian cycles are sought that optimize several objectives simultaneously. In
order to transfer the notion of optimal solutions tomulti-criteria optimization problems, Pareto curves have been introduced
(cf. [7]). A Pareto curve is a set of all optimal trade-offs between the different objective functions.

In the following, k always denotes the number of objective functions. We assume throughout the paper that k ≥ 2 is an
arbitrary constant. Let [k] = {1, 2, . . . , k}. The k-criteria variants of the TSP that we consider are denoted by k-Min-STSP
and k-Min-ATSP as well as k-Max-STSP and k-Max-ATSP.

We define the following terms for Max-TSP only. After that, we briefly point out the differences for Min-TSP. For a
k-criteria variant of Max-TSP, we have edge weights w1, . . . , wk : E → Q+. For convenience, let w = (w1, . . . , wk).
Inequalities of vectors are meant component-wise. A tour H dominates another tour H̃ if w(H) ≥ w(H̃) and at least one of
these k inequalities is strict. This means that H is strictly preferable to H̃ . A Pareto curve is a set of all solutions that are not
dominated by another solution. Since Pareto curves for the TSP cannot be computed efficiently, we have to be satisfied with
approximate Pareto curves. A set P of tours is called an α-approximate Pareto curve for the instance (G, w) if the following
holds: For every tour H̃ of G, there exists a tour H ∈ P of G with w(H) ≥ αw(H̃). We have α ≤ 1, and a 1-approximate
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Table 1
Approximation ratios for single-criterion and multi-criteria TSP.

Variant Single-criterion Multi-criteria
Randomized Deterministic Randomized Deterministic New

Min-STSP 3/2 [3] 2+ ε [14]
2 (k = 2) [9]

Min-ATSP O


log n
log log n


[2] 2

3 · log2 n [8] log n+ ε [13] 2
3 · k log2 n [8]

O


k log n
log log n


[2]

Max-STSP 7/9 [16] 2/3 [10] 1
2k − ε

7
27 (k = 2) [13] 3

8 − ε (k = 2)

Max-ATSP 2/3 [11] 1/2 [10] 1
4k−2 − ε

1
4 − ε (k = 2)

Pareto curve is a Pareto curve. An algorithm is called an α approximation algorithm if it computes an α-approximate Pareto
curve. A fully polynomial time approximation scheme (FPTAS) for a multi-criteria maximization problem computes (1 − ε)-
approximate Pareto curves in time polynomial in the size of the instance and 1/ε for all ε > 0.

For Min-TSP, a tour H dominates H̃ if w(H) ≤ w(H̃) and at least one inequality is strict. A set P of tours is an
α-approximate Pareto curve if, for every tour H̃ , we have an H ∈ P with w(H) ≤ αw(H̃). Note that α ≥ 1 for minimization
problems. An FPTAS is a (1+ ε) approximation algorithm.

1.1. Previous work

Table 1 shows the current approximation ratios for the different variants of multi-criteria TSP. Many of these
approximation algorithms can be extended to the case where some objectives should be minimized and others should be
maximized [12]. We remark that an α approximation for Min-ATSP or Min-STSP yields a kα approximation for k-Min-ATSP
or k-Min-STSP simply by encoding all objective functions into a single one. Thus, Feige and Singh’s algorithm [8] yields a
deterministic 2

3 · k log2 n approximation for k-Min-ATSP and Asadpour et al.’s algorithm [2] yields a randomized O(k log n
log log n )

approximation.
Unfortunately, no deterministic algorithms are known except for k-Min-STSP, k-Min-ATSP, and 2-Max-STSP. The reason

for this is that most approximation algorithms for multi-criteria TSP use cycle covers. A cycle cover of a graph is a set of
vertex-disjoint cycles such that every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of cycle covers
that consist of just one cycle. In contrast toHamiltonian cycles, cycle covers of optimalweight canbe computed in polynomial
time. Cycle covers are among the main tools for designing approximation algorithms for the TSP [5,11,8,16,4,6]. However,
only a randomized fully polynomial-time approximation scheme (FPTAS) for multi-criteria cycle covers is known [18]. This
randomized FPTAS builds on a reduction to a specific unweighted matching problem [17], which is then solved using the
RNC algorithm by Mulmuley et al. [15]. Derandomizing this algorithm seems to be difficult [1], and these nested reductions
make the algorithmquite slow. Hence, it is natural to askwhether there exist deterministic, faster approximation algorithms
for multi-criteria TSP.

1.2. New results

We present deterministic approximation algorithms for multi-criteria Max-TSP, which are self-contained and
considerably simpler and faster than the existing randomized algorithms. (Table 1 shows an overview.) Our algorithms do
not use other algorithms as black boxes except formaximum-weightmatchingwith a single objective function. Furthermore,
they do not make any assumption about the representation of the edge weights. The existing algorithms require the
(admittedly weak and natural) assumption that the edge weights are encoded in binary.

For k-Max-ATSP, we get a ratio of 1
4k−2 − ε for any ε > 0 (Section 2). For k-Max-STSP, we achieve a ratio of 1

2k − ε
(Section 3). For the special case of two objective functions, we can improve this to 1/4− ε for 2-Max-ATSP and 3/8− ε for
2-Max-STSP. The latter is an improvement over the existing deterministic 7/27 approximation for 2-Max-STSP [13,16].

2. Max-ATSP

The rough idea behind our algorithm for k-Max-ATSP is as follows: First, we ‘‘guess’’ a few edges that we contract to get
a slightly smaller instance. The number of edges that we have to contract depends only on k and ε. Second, we compute
k maximum-weight matchings in the smaller instance, each with respect to one of the k objective functions. Third, we
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