
Reducing memory space consumption through dataflow analysis

Ozcan Ozturk �

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

a r t i c l e i n f o

Article history:

Received 22 August 2010

Accepted 18 July 2011
Available online 29 July 2011

Keywords:

Memory

Dataflow analysis

CFG

Compiler

a b s t r a c t

Memory is a key parameter in embedded systems since both code complexity of

embedded applications and amount of data they process are increasing. While it is true

that the memory capacity of embedded systems is continuously increasing, the increases

in the application complexity and dataset sizes are far greater. As a consequence, the

memory space demand of code and data should be kept minimum. To reduce the

memory space consumption of embedded systems, this paper proposes a control flow

graph (CFG) based technique. Specifically, it tracks the lifetime of instructions at the basic

block level. Based on the CFG analysis, if a basic block is known to be not accessible in the

rest of the program execution, the instruction memory space allocated to this basic block

is reclaimed. On the other hand, if the memory allocated to this basic block cannot be

reclaimed, we try to compress this basic block. This way, it is possible to effectively use

the available on-chip memory, thereby satisfying most of instruction/data requests from

the on-chip memory. Our experiments with this framework show that it outperforms the

previously proposed CFG-based memory reduction approaches.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in embedded processor design techniques have led to the development of complex embedded
systems. Memory is a key parameter in these embedded systems since both code complexity of embedded applications
and amount of data they process are increasing. While it is true that the memory capacity of embedded systems is
continuously increasing, the increases in the application complexity and dataset sizes are far greater. Moreover, as
embedded systems become increasingly complex, there is a growing demand for executing multiple applications
concurrently, thereby putting even higher pressure on memory system.

Scratch Pad Memories (SPMs) have received considerable attention as on-chip memory building blocks. This is
especially true for embedded systems as SPMs consume less energy and exhibit a very good runtime data locality behavior.
Unlike a conventional cache managed by hardware, SPM is controlled by a programmer or a compiler. Therefore, if
supported by appropriate compiler analysis and optimizations, SPM can cut the number of off-chip data accesses
dramatically. Moreover, when compared to a cache, SPM provides predictability and reproducibility of timings, which is
crucial for time critical embedded systems, or other systems where precise timing is important. Prior studies have
explored different approaches to exploit the use of SPMs as memory blocks for both instruction and data [2,3,7,9,11,24].

We focus on the efficient use of a two level SPM memory hierarchy shared by multiple applications executing at the
same time. In such an SPM memory hierarchy, this paper proposes a control flow graph (CFG) based technique to reduce
the memory space consumption of applications. Specifically, it tracks the lifetime of instructions at the basic block level.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

1477-8424/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cl.2011.07.001

� Tel.: þ90 312 2903444.

E-mail addresses: ozturk@cs.bilkent.edu.tr, ozturk@nec-labs.com

Computer Languages, Systems & Structures 37 (2011) 168–177

www.elsevier.com/locate/cl
dx.doi.org/10.1016/j.cl.2011.07.001
mailto:ozturk@cs.bilkent.edu.tr
mailto:ozturk@cse.psu.edu
dx.doi.org/10.1016/j.cl.2011.07.001
dx.doi.org/10.1016/j.cl.2011.07.001


Based on the CFG analysis, if a basic block is known to be not accessible in the rest of the program execution, the
instruction memory space allocated to this basic block is reclaimed. On the other hand, if the memory allocated to this
basic block cannot be reclaimed, our CFG based approach tries to compress the basic block if this basic block is rarely
accessed. This way, it is possible to effectively use the available on-chip memory, thereby satisfying most of instruction/
data requests from the on-chip memory. This is particularly important when available on-chip memory space is shared by
multiple applications. In this paper, we make the following contributions:

� The first contribution of this paper is to reclaim the instruction memory that is no longer needed. This is achieved by
generating a live set for each basic block in a given application. An example CFG fragment is given for a sample GCD
implementation in Fig. 1. If execution reaches basic block C5, only live basic blocks are C5 and C6. Therefore, memory
allocated to basic blocks C0, C1, C2, C3, and C4 can be deallocated.
� The second contribution of this paper is to extend memory space savings by compressing less frequently accessed basic

blocks. Based on the profiling information, compression algorithm selects target basic blocks to compress. One needs to
be careful in compressing a basic block as it can cause excessive execution overheads if not carefully selected. For
example, if we consider the same CFG given in Fig. 1, one can see that C0 is followed either by C1 on the left branch or
C5 on the right branch. If we know based on the profiling information that C0 is followed by C5 most of the time,
compressing basic blocks C1, C2, C3, and C4 will reduce the memory space dramatically. As a result, this approach can
be expected to be most successful in situations where there exist a few basic blocks with very high reuse.
� Third contribution of this paper is to evaluate the proposed CFG based memory reduction scheme using eleven

benchmarks. It also compares our approach to a previously proposed basic block level garbage collection approach. Our
experiments with several applications show that our approach can be very useful in increasing the benefits coming
from an SPM.
� The last contribution of this paper is to show how saved memory space can be used to increase energy savings in

banked memory architectures currently employed in some embedded systems.

The rest of this paper is organized as follows. Section 2 discusses related work, and Section 3 gives the details of the
execution environment, dataflow analysis and proposed algorithms. Section 4 presents the results from our experimental
evaluation and Section 5 concludes the paper.

2. Related work

Prior SPM studies primarily focused on the data access management. For instance, Panda et al. [16] present a static data
partitioning scheme to eliminate the potential conflict misses due to limited associativity of on-chip cache. This approach
benefits applications with a number of small (and highly reused) arrays that can fit in the SPM. In [8], authors propose a
dynamic SPM management scheme for data accesses. Their framework uses both loop and data transformations to
maximize the reuse of data elements stored in the SPM. Cooper et al. [6] show that using the register allocation’s coloring
paradigm can significantly reduce the amount of memory required for the program. Catthoor [5] discuss how accesses to a
software-managed memory hierarchy can be optimized through code/data transformations. In [22], authors present

0

1

2 3

4

5

6

_gcd:
subl %esp=%esp,4
store4 

MEM[%esp]=%ebp
copy4 %ebp=%esp
addl __t=%ebp,8
load4 %edx=MEM[__t]
addl __t=%ebp,12
load4 %eax=MEM[__t]
andl __t=%eax,%eax
cmpl_eq cc_eq=__t,0
twoWayBr cc_eq,L8,L6
goto L6

Fig. 1. An example CFG fragment is given for a sample GCD implementation.

O. Ozturk / Computer Languages, Systems & Structures 37 (2011) 168–177 169



Download English Version:

https://daneshyari.com/en/article/418417

Download Persian Version:

https://daneshyari.com/article/418417

Daneshyari.com

https://daneshyari.com/en/article/418417
https://daneshyari.com/article/418417
https://daneshyari.com

