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a b s t r a c t

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix.
We study the energy of integral circulant graphs, also called gcd graphs, which can be
characterized by their vertex count n and a set D of divisors of n in such a way that they
have vertex set Zn and edge set {{a, b} : a, b ∈ Zn, gcd(a − b, n) ∈ D}. For a fixed prime
power n = ps and a fixed divisor set size |D| = r , we analyse the maximal energy among
all matching integral circulant graphs. Let pa1 < pa2 < · · · < par be the elements of D . It
turns out that the differences di = ai+1 − ai between the exponents of an energy maximal
divisor setmust satisfy certain balance conditions: (i) either all di equal q :=

s−1
r−1 , or atmost

the two differences [q] and [q + 1] may occur; (ii) there are rules governing the sequence
d1, . . . , dr−1 of consecutive differences. For particular choices of s and r these conditions
already guarantee maximal energy and its value can be computed explicitly.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Integral circulant graphs have attracted much research attention lately, in particular since more and more people have
become aware that they play a role in quantum physics [24,6]. A characteristic property of circulant graphs is that their
vertices can be numbered such that any cyclic rotation of the vertex numbering results in a graph isomorphic to the original
graph. Circulant graphs have been the object of research for quite some time [9] and belong to the important family of Cayley
graphs. The integral circulant graphs, having only integer eigenvalues, form a small but rather distinguished subclass since
integral graphs are quite rare among graphs in general [1].

Given an integer n and a set D of positive divisors of n, the integral circulant graph ICG(n, D) is defined as the graph
having vertex set Zn = {0, 1, . . . , n − 1} and edge set {{a, b}: a, b ∈ Zn, gcd(a − b, n) ∈ D}. We consider only loopless
gcd graphs, i.e. n ∉ D . For |D| = 1 we obtain the subclass of so-called unitary Cayley graphs. Over the years, the
general structural properties of integral circulant graphs have been well researched [11,7,26,18,2,3,19,12,10,4]. Due to the
connection with quantum physics, emphasis has lately been placed on researching the energy of integral circulant graphs
[25,16,17,21,5,20,22,23].

The energy E(G) of a graph G on n vertices is defined as

E(G) =

n
i=1

|λi|,

where λ1, . . . , λn are the eigenvalues of the adjacency matrix of G. Refer to [8,13,14] for general results on graph energy.
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Let us abbreviateE(n, D) = E(ICG(n, D)). Given a positive integer n, we consider

Emin(n) := min {E(n, D):D ⊆ {1 ≤ d < n: d | n}}

and

Emax(n) := max {E(n, D):D ⊆ {1 ≤ d < n: d | n}}.

Consider a prime power n = ps and a divisor set D = {pa1 , pa2 , . . . , par } with exponents 0 ≤ a1 < · · · < ar ≤ s − 1.
According to Theorem 2.1 in [22] we have

E(ps, D) = 2(p − 1)ps−1 r − (p − 1)hp(a1, . . . , ar)

, (1)

where

hp(x) = hp(x1, . . . , xr) :=

r−1
k=1

r
i=k+1

1
pxi−xk

(2)

for x = (x1, . . . , xr) ∈ Rr . Observe that hp has the symmetry property

hp(s − 1 − ar , . . . , s − 1 − a1) = hp(a1, . . . , ar) (3)

for all integral exponents 0 ≤ a1 < a2 < · · · < ar−1 < ar ≤ s − 1. A straightforward consequence of (1) is thatEmin(ps) is
attained precisely for the singleton divisor sets D = {pt} with 0 ≤ t ≤ s − 1 (cf. [22, Theorem 3.1]).

In [23] divisor sets D producing graphs with maximal energy Emax(ps) were studied. Equivalently, exponent tuples
(a1, . . . , ar) minimizing hp had to be found. By the result cited above, such minimizers satisfy r ≥ 2, and they obviously
must have the entries a1 = 0 and ar = s − 1. Accordingly, a corresponding a = (a1, . . . , ar) lies in the set

A(s, r) := {(a1, . . . , ar) ∈ Zr : 0 = a1 < a2 < · · · < ar−1 < ar = s − 1},

and such an a is called an admissible exponent tuple.
Hence the quest for minimizers of hp is only interesting in case r ≥ 3, which we shall assume in the sequel. It was shown

by the use of methods from convex optimization that, for fixed s and r , the function hp becomes almost minimal if only
0 = a1 < a2 < · · · < ar−1 < ar = s − 1 are chosen in nearly equidistant positions [23, Theorem 4.2]. Note here that
perfect equidistance can only be achieved if (r − 1) | (s − 1) because the ai are integers. It is the purpose of this article to
use combinatorial instead of analytic arguments in order to refine the earlier approximative results.

The nearly equidistant positioning just mentioned indicates that the key to maximizing the energy lies in considering
the successive exponent differences. Hence, for a given a ∈ A(s, r), we define its delta vector as

δ(a) := (δ1(a), δ2(a), . . . , δr−1(a)) ∈ Nr−1

with δj(a) := aj+1 − aj (1 ≤ j ≤ r − 1). Obviously, we have
r−1

j=1 δj(a) = s − 1. Thus, introducing

D(s, r) :=


(d1, . . . , dr−1) ∈ Nr−1:

r−1
j=1

dj = s − 1


,

the function

δ:

A(s, r) −→ D(s, r)
(a1, a2, . . . , ar) → (a2 − a1, a3 − a2, . . . , ar − ar−1)

is 1–1 with its inverse

δ−1:

D(s, r) −→ A(s, r)
(d1, d2, . . . , dr−1) → (0, d1, d1 + d2, . . . , d1 + d2 + · · · + dr−2,s−1).

The mentioned divisor set structure becomes apparent by restrictions on the delta vector δ(a) corresponding to an energy
maximal exponent tuple a as follows:

First, the set {δj(a): j = 1, . . . , r − 1} of differences is either a singleton or has only two elements that are successive
positive integers. Second, the distribution of the differences must satisfy certain balance conditions, in the sense that the
differences of the value occurring less often than the other must be distributed somewhat ‘‘evenly’’ between the other
difference values.

In some cases, these restriction will already characterize the delta vectors, and consequently the divisor set(s) imposing
maximal energy on the corresponding class of integral circulant graphs. In other words, for some fixed s and r , we will be
able to determine precisely

min hp := min{hp(a): a ∈ A(s, r)}

along with all admissible a satisfying hp(a) = min hp.
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