
Discrete Applied Mathematics 209 (2016) 16–26

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The complexity of finding arc-disjoint branching flows
J. Bang-Jensen a,∗, Frédéric Havet b, Anders Yeo c,d

a Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark
b Project Coati, I3S (CNRS, UNSA) and INRIA, Sophia Antipolis, France
c Engineering Systems and Design, Singapore University of Technology and Design, 20 Dover Drive, 138682 Singapore, Singapore
d Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

a r t i c l e i n f o

Article history:
Received 12 August 2014
Received in revised form 7 October 2015
Accepted 10 October 2015
Available online 10 November 2015

Keywords:
Disjoint branchings
Branching flow
Polynomial algorithm
NP-complete

a b s t r a c t

The concept of arc-disjoint flows in networks was recently introduced in Bang-Jensen
and Bessy (2014). This is a very general framework within which many well-known
and important problems can be formulated. In particular, the existence of arc-disjoint
branching flows, that is, flows which send one unit of flow from a given source s to all
other vertices, generalizes the concept of arc-disjoint out-branchings (spanning out-trees)
in a digraph. A pair of out-branchings B+

s,1, B
+

s,2 from a root s in a digraph D = (V , A) on n
vertices corresponds to arc-disjoint branching flows x1, x2 (the arcs carrying flow in xi are
those used in B+

s,i, i = 1, 2) in the network that we obtain from D by giving all arcs capacity
n−1. It is then a natural question to ask howmuchwe can lower the capacities on the arcs
and still have, say, two arc-disjoint branching flows from the given root s. We prove that
for every fixed integer k ≥ 2 it is

• an NP-complete problem to decide whether a network N = (V , A, u)where uij = k for
every arc ij has two arc-disjoint branching flows rooted at s.

• a polynomial problem to decide whether a network N = (V , A, u) on n vertices and
uij = n − k for every arc ij has two arc-disjoint branching flows rooted at s.

The algorithm for the later result generalizes the polynomial algorithm, due to Lovász, for
deciding whether a given input digraph has two arc-disjoint out-branchings rooted at a
given vertex. Finally we prove that under the so-called Exponential TimeHypothesis (ETH),
for every ϵ > 0 and for every k(n) with (log(n))1+ϵ

≤ k(n) ≤
n
2 (and for every large i we

have k(n) = i for some n) there is no polynomial algorithm for deciding whether a given
digraph contains two arc-disjoint branching flows from the same root so that no arc carries
flow larger than n − k(n).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Notation follows [3]. We denote the vertex set and arc set of a digraph D by V (D) and A(D), respectively and write
D = (V , A) where V = V (D) and A = A(D). Unless otherwise specified, the numbers n andmwill always be used to denote
the number of vertices, respectively arcs in the digraph in question. The digraphs may have parallel arcs but no loops. Paths
and cycles are always directed unless otherwise specified. We will use the notation [k] for the set of integers {1, 2, . . . , k}.

∗ Corresponding author.
E-mail addresses: jbj@imada.sdu.dk (J. Bang-Jensen), frederic.havet@inria.fr (F. Havet), andersyeo@gmail.com (A. Yeo).

http://dx.doi.org/10.1016/j.dam.2015.10.012
0166-218X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2015.10.012
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2015.10.012&domain=pdf
mailto:jbj@imada.sdu.dk
mailto:frederic.havet@inria.fr
mailto:andersyeo@gmail.com
http://dx.doi.org/10.1016/j.dam.2015.10.012


J. Bang-Jensen et al. / Discrete Applied Mathematics 209 (2016) 16–26 17

An (s, t)-path in a digraph D is a directed path from the vertex s to the vertex t . The underlying graph of a digraph
D, denoted UG(D), is obtained from D by suppressing the orientation of each arc. A digraph D is connected if UG(D) is a
connected graph. When xy is an arc of D we say that x dominates y. For a digraph D = (V , A) the out-degree, d+

D (x) (resp.
the in-degree, d−

D (x)) of a vertex x ∈ V is the number of arcs of the kind xy (resp. yx) in A, where we count parallel arcs.
When X ⊆ V we shall also write d+

X (v) to denote the number of arcs vxwith x ∈ X .
An out-tree rooted at s, also called an s-out-tree, is a tree containing the vertex s in UG(D) such that every vertex v

different from s has exactly one arc entering in the tree. Equivalently, s has a unique directed path to every other vertex of
the tree using only arcs of the tree. An s-out-branching is a spanning s-out-tree. We use the notation T+

s , B+
s to denote an

s-out-tree, respectively an s-out-branching.
Branchings in digraphs are important from a practical point of view and appear in many applications and hence it is

relevant to consider quality measures for branchings. This has been done in a number of papers, see e.g. [4,5,8,9,14]. An
s-out-branching B+

s is k-safe if no matter which out-neighbour v of s in B+
s we consider, the s-out-tree T+

s that we will
obtain after deleting all the vertices of the out-tree T+

v rooted at v in B+
s contains at least k vertices (s and at least k−1 other

vertices). In applications (where an s-out-branching is used to route information or similar from the root s) it is desirable to
use an out-branching which is k-safe for a high value of k, because this means that no matter which arc we cut, s can still
reach k other vertices using only arcs from the remaining s-out-tree.

In terms of protection against arc-faults, branchings are not a very good way of sending information from one source to
all other vertices: If we insist that the vertex sets of the routes that we use to send the information from s to all other vertices
may only intersect in a prefix of each route (this is equivalent to saying that the union of the routes is an s-out-branching),
then the set of routes may be very vulnerable to arc-deletions. As an example consider the digraph H consisting of vertices
s = v1, v2, . . . , v2p+1 and arcs {sv2, sv3, v2v3} ∪ {v3vi|i ≥ 4}. This digraph contains no 3-safe s-out-branching. On the other
hand, if instead we use each of the arcs sv2, sv3 on p of the paths from s to V − s, then deletion of one of the arcs sv2, sv3
disconnects s from only half of the other vertices. We may then ask what is the best way to route the information from s to
all other vertices, while preserving a high degree of protection against arc-faults. This leads to the study of branching flows.
Before we can formally define these, we need to recall a bit of flow theory.

A network N = (V , A, u) is a digraph D = (V , A) equipped with a non-negative capacity function u : A → R0 on its
arcs. A flow in N is any non-negative function x : A → R0 which satisfies that xij ≤ uij for every ij ∈ A, where xij, uij denote,
respectively, the flow value on ij and the capacity of ij. The balance-vector of a flow x is the function bx on V which to each
vertex i ∈ V associates the value bx(i) =


ij∈A xij −


pi∈A xpi.

If N = (V , A, u, b), that is, there is also a balance-vector specified for N , then a flow x is feasible in N if it satisfies
bx(v) = b(v) for all v ∈ V . Two flows x, y in a network N are arc-disjoint if xij · yij = 0 for every arc ij of N .

A path flow along the path P (resp. cycle flow along the cycle C) in a network N is a flow x which has xij = k for every
arc on P (resp. C) for some positive value k and xij = 0 for all arcs not on P (resp. C). An s-branching flow in a network N
is a flow x in N with balance vector bx(v) = −1 for v ≠ s and bx(s) = n − 1, where n denotes the number of vertices in
N . Finally an (s, t)-flow in a network N is a flow x with balance vector bx(s) = −bx(t) = k and bx(v) = 0 for v ∉ {s, t},
where k is a non-negative real number which is also called the value of the (s, t)-flow. The so-called max-flow problem
is the problem of finding the maximum value k so that a given network N with special vertices s, t has an (s, t)-flow. This
problem is solvable in polynomial time by many different methods, see e.g. [1,3].

An important result in flow theory is the following which states that it is possible to decide in polynomial time whether
or not there exists a feasible flow for a given network N = (V , A, u, b) (see e.g. [3, Section 4.8]).

Theorem 1.1. For a given network N = (V , A, u, b) with arc-capacities given by u and vertex-balances prescribed by b, by
solving one max-flow problem in an associated network, in polynomial time, one can either determine a feasible flow x in N or
verify (by producing a certificate for the non-existence) that no such flow exists in N .

The connection between branching flows and max-flows is particularly simple: A network N = (V , A, u) on n vertices
has an s-branching flow for some s ∈ V if and only if there is an (s, t)-flow of value n − 1 in the network N ′ that we obtain
from N by adding a new vertex t and an arc vt of capacity 1 for each v ∈ V − s.

The following folklore result (see e.g. [1, Section 3.5] or [3, Section 4.3.1]) is very useful when working with flows.

Theorem 1.2 (Flow Decomposition Theorem). Every flow x in a network N on n vertices and m arcs is the arc-sum of at most
n+m path and cycle flows. Furthermore, the path flows can be taken along paths P1, . . . , Pq such that Pi starts in a vertex si with
bx(si) > 0 and ends in a vertex ti with bx(ti) < 0 for i ∈ [q]. In particular, if bx ≡ 0 there are no path flows in the decomposition
and x is the arc-sum of at most m cycle flows. Given the flow x, a decomposition as above can be found in time O(nm).

Note that when we consider branching flows below, we are only interested in the acyclic part of such a flow, that is, the
collection of paths from the root to all other vertices that we obtain by flow decomposition (we leave out flow along cycles
since that does not contribute to the balance of the flow). By the Flow Decomposition Theorem, every branching flow x from
s contains one or more out-branchings from s as a subdigraph (x sends one unit of flow from s to all other vertices).

As in the case of branchings, we may also measure the quality of an s-branching flow in terms of how vulnerable it is
towards arc-deletions. If we have no restrictions on the flow values, a branching flow x may have flow equal to r ≤ n − 1



Download English Version:

https://daneshyari.com/en/article/418453

Download Persian Version:

https://daneshyari.com/article/418453

Daneshyari.com

https://daneshyari.com/en/article/418453
https://daneshyari.com/article/418453
https://daneshyari.com

