Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

ABSTRACT

Poonen's conjecture and Ramsey numbers

Shalom Eliahou^{a,*}, Youssef Fares^b

^a ULCO, LMPA J. Liouville, CNRS FR 2956, CS 80699 - 62228 Calais Cedex, France ^b LAMFA, CNRS-UMR 7352, Université de Picardie, 80039 Amiens, France

ARTICLE INFO

Article history: Received 30 October 2014 Received in revised form 3 July 2015 Accepted 31 July 2015 Available online 24 August 2015

Keywords: Rational point Periodic point Quadratic polynomial Stability number Triangle-free graphs

1. Introduction

Let $c \in \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. Our purpose in this paper is to tackle a problem in number theory, namely the study of rational periodic points under iteration of the quadratic map $\varphi_c : \mathbb{Q} \to \mathbb{Q}$, $\varphi_c(X) = X^2 + c$, by means of graph-theoretic arguments. The number of such periodic points is finite, as follows from a general result due to Northcott [4]. Here we obtain an upper bound on this number in terms of *a priori* unrelated bounds on graphs, namely the Ramsey numbers $R_k(3)$. Recall that $R_k(3)$ denotes the least positive integer N such that, for any k-coloring of the edges of the complete graph K_N on N vertices, there is a monochromatic triangle.

Here are a few more formal details. As usual, for $n \in \mathbb{N}$ we denote by $\varphi_c^n = \varphi_c \circ \cdots \circ \varphi_c$ the *n*th iterate of φ_c .

Definition 1.1. A rational periodic point of φ_c is an $x \in \mathbb{Q}$ such that there exists $n \in \mathbb{N}^*$ with $\varphi_c^n(x) = x$. The smallest such n is called the *period* of x. We shall denote by $Per(\varphi_c)$ the set of all rational periodic points of φ_c , i.e.

 $\operatorname{Per}(\varphi_c) = \{x \in \mathbb{Q} \mid \exists n \in \mathbb{N}^* \text{ with } \varphi_c^n(x) = x\}.$

Our main result in this paper is a bound on $|Per(\varphi_c)|$ in terms of the Ramsey numbers $R_k(3)$, namely: given $c \in \mathbb{Q}^*$, let k be the number of distinct prime factors of the denominator of c. Then

$$|\operatorname{Per}(\varphi_c)| \le 2R_k(3) - 2.$$

As for individual rational periodic points in $Per(\varphi_c)$, there is a very intriguing conjecture about their possible periods [1].

Conjecture 1.2 (Poonen). Let $c \in \mathbb{Q}^*$. Let $x \in Per(\varphi_c)$. Then x is of period at most 3.

* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2015.07.038 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Poonen's coniecture a

For $c \in \mathbb{Q}^*$, let $\varphi_c : \mathbb{Q} \to \mathbb{Q}$ denote the quadratic map $\varphi_c(X) = X^2 + c$. How large can

the period of a rational periodic point of φ_c be? Poonen conjectured that it cannot exceed

3. Here, we tackle this conjecture by graph-theoretical means with the Ramsey numbers

 $R_k(3)$. We show that, for any $c \in \mathbb{Q}^*$ whose denominator admits at most k distinct prime

factors, the map φ_c admits at most $2R_k(3) - 2$ periodic points. As an application, we prove

E-mail addresses: eliahou@lmpa.univ-littoral.fr (S. Eliahou), youssef.fares@u-picardie.fr (Y. Fares).

For an example of a periodic point of period 3, take c = -29/16 and $x_0 = -1/4$. Then the orbit of x_0 under iteration of φ_c is $\{-1/4, -7/4, 5/4\}$.

Here are a few partial results towards the conjecture. The relatively easy first one shows that the conjecture remains open only in the case where the denominator of c is even.

Proposition 1.3 ([7]). If the denominator of c is odd, then all $x \in Per(\varphi_c)$ have period at most 2. In particular, Poonen's conjecture holds in this case.

Much more demanding are the results stating that no $x \in Per(\varphi_c)$ may have period 4 (see [3]) or period 5 (see [1]). Moreover, period 6 would also be excluded, provided the Birch and Swinnerton-Dyer conjecture be shown to hold in one specific case [6].

As a corollary of our bound on $|Per(\varphi_c)|$, we shall prove that Poonen's conjecture holds for all $c \in \mathbb{Q}^*$ whose denominator is a power of 2, and in fact of any prime *p*, even though the case *p* odd follows from Proposition 1.3.

2. On families of 2-stable graphs

Let *G* be a simple graph on the vertex set *V*. A subset $S \subseteq V$ is *stable* if no two vertices in *S* are neighbors in *G*. The largest cardinality of a stable set in *G* is called the *stability number* or *independence number* of *G* and is traditionally denoted $\alpha(G)$.

Definition 2.1. We say that a graph *G* is *r*-stable if $\alpha(G) \le r$, i.e. if *G* contains no stable set of size r + 1.

For instance, a complete graph is 1-stable, and conversely. In this paper, we consider families of 2-stable graphs, and look for conditions forcing them to have a common edge. As usual, we shall denote by E(G) the set of edges of a graph G.

Proposition 2.2. Let G_1, \ldots, G_k be 2-stable simple graphs on a vertex set V. If $|V| \ge R_k(3)$, then G_1, \ldots, G_k have an edge in common.

Proof. A simple yet key remark is that a graph *G* on *V* is 2-stable if and only if its complement graph \overline{G} on *V* is triangle-free. Let now N = |V|, and assume that the G_i 's have no common edge. Hence, for every edge $xy \in E(K_N)$, there exists an index $j \in \{1, 2, ..., k\}$ such that $xy \notin E(G_i)$. Setting $\chi(xy) = j$ for any choice of such an index j defines a k-coloring

$$\chi: E(K_N) \to \{1, 2, \ldots, k\}$$

of the edges of K_N , with the property that if $\chi(xy) = j$ then $xy \in E(\overline{G_j})$. Since the $\overline{G_j}$'s are triangle-free, it follows that $E(K_N)$ contains no monochromatic triangle under χ . Therefore, we must have $N < R_k(3)$, by the defining property of this Ramsey number.

We end this short section with some remarks on the numbers $R_k(3)$. Currently, their only exactly known values are $R_1(3) = 3$, $R_2(3) = 6$ and $R_3(3) = 17$. For k = 4, it is only known that $51 \le R_4(3) \le 62$. See [5]. More generally, the following bounds hold:

 $3.1999^k \le R_k(3) \le 2 - k + kR_{k-1}(3).$

The lower and upper bound are taken from [9] and [2], respectively. See also [5,8] for more information.

3. An arithmetic consequence

We shall now use the Ramsey numbers $R_k(3)$ in a purely arithmetic statement. It implies, for instance, that there cannot exist three distinct odd positive integers x, y, z such that x + y, x + z, y + z are all powers of 2. This follows from the next result for $P = \{2\}$ using the value $R_1(3) = 3$.

Notation 3.1. For $n \in \mathbb{N}^*$, we denote by supp(n) the set of prime numbers p dividing n.

For instance, $supp(1) = \emptyset$, $supp(64) = \{2\}$ and $supp(120) = \{2, 3, 5\}$.

Theorem 3.2. Let P be a finite set of prime numbers. Let $V \subseteq \mathbb{N}^*$ be a set of positive integers satisfying the following two conditions:

(1) $\operatorname{supp}(x) \cap P = \emptyset$ for all $x \in V$, (2) $\operatorname{supp}(x + y) \subseteq P$ for all distinct $x, y \in V$.

Then $|V| \le R_k(3) - 1$ *, where* k = |P|*.*

Proof. We first define *k* simple graphs on *V* as vertex set. For each $p \in P$, let G_p be the graph on *V* such that, for all distinct $x, y \in V$,

$$\{x, y\} \in E(G_p) \iff \begin{cases} x + y \neq 0 \mod p & \text{if } p \text{ odd,} \\ x + y \neq 0 \mod 4 & \text{if } p = 2. \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/418461

Download Persian Version:

https://daneshyari.com/article/418461

Daneshyari.com