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a b s t r a c t

We study a new problem for cubic graphs: bipartization of a cubic graph Q by deleting
sufficiently large independent set I . It can be expressed as follows: Given an integer k and a
connected n-vertex tripartite cubic graph Q = (V , E) with independence number α(Q ), does
Q contain an independent set I of size k such that Q − I is bipartite? We are interested for
which values of k the answer to this question is affirmative.We prove constructively that if
α(Q ) ≥ 2n/5, then the answer is positive for each k satisfying ⌊(n−α(Q ))/2⌋ ≤ k ≤ α(Q ).
It remains an open question if a similar construction is possible for α(Q ) < 2n/5.

We also show that this problem with α(Q ) ≥ 2n/5 and k satisfying ⌊n/3⌋ ≤ k ≤ α(Q )
can be related to semi-equitable graph 3-coloring, where one color class is of size k, and
the subgraph induced by the remaining vertices is equitably 2-colored. This means that Q
has a coloring of type (k, ⌈(n − k)/2⌉, ⌊(n − k)/2⌋).

© 2015 Elsevier B.V. All rights reserved.

1. Some preliminaries

There are many challenging and interesting problems involving independent sets and cubic graphs. One of the most
known is the problem of independence, IS(Q , k):

Given a connected cubic graph Q = (V , E) and an integer k, does Q contain an independent set of size at least k?

An independent set of a graph Q is a subset I of the vertices of Q , I ⊆ V (Q ), such that no two vertices in I are joined by
an edge in Q . The size of the largest independent set is called the independence number of Q , and it is denoted by α(Q ). The
problem of finding the value of α(Q ) is widely discussed in the literature. In general, the problem IS(Q , k) is NP-complete
for cubic graphs, and even for planar cubic graphs [5]. A comprehensive survey of results on the IS problem, including cubic
graphs, was presented in [1,8,10].

The second type of problems is connected with decycling sets of cubic graphs (also known as feedback-vertex sets). For
a graph Q , a subset S ⊆ V (Q ) is a decycling set of Q if and only if Q − S is acyclic, where by Q − S we mean the subgraph
of Q induced by the vertices in S = V (Q ) \ S. Although the decycling set decision problem is NP-complete in general, it is
polynomially solvable for cubic graphs [11].
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The third group contains problems connected with bipartization of cubic graphs. Given a graph, the task is to find a
smallest set of vertices whose deletion makes the remaining graph bipartite. Choi et al. [4] showed that the bipartization
decision problem is NP-complete for cubic graphs. Some approximation algorithms were given in [9].

In this paper we combine the above approaches and define the Bipartization IS problem BIS(Q , k), as follows:

Given a connected cubic graph Q = (V , E) and integer k, does Q contain an independent set I of size at least k such
that Q − I is bipartite?

We are interested for which values of k the answer to this question is affirmative. This problem can be seen as a task of
finding independent odd decycling sets.

We say that a graph G is t-colorable if its vertex set can be partitioned into t independent sets-color classes. The smallest
value of t admitting t-colorability of graph G is named the chromatic number of G and denoted by χ(G). Let us recall Brooks’
theorem:

Theorem 1 ([2]). For any connected graph G with maximum degree ∆, the chromatic number χ(G) of G is at most ∆, unless G
is a clique or an odd cycle.

This implies that

2 ≤ χ(Q ) ≤ 3

for all cubic graphs except K4.
It is obvious that for 2-chromatic cubic graphs and k ≤ |V (Q )|/2 the answer to BIS(Q , k) is affirmative. Hence, in the

sequel we consider only connected cubic graphs Q with χ(Q ) = 3. This means that V (Q ) can be partitioned into three
independent sets and Q is not bipartite. The class of such cubic graphs will be denoted by Q3. Its subclass of graphs on n
vertices will be denoted by Q3(n).

A graph is equitably t-colorable if and only if its vertex set can be partitioned into independent sets V1, V2, . . . , Vt such
that

|Vi|−|Vj|
 ≤ 1 for all i, j = 1, 2, . . . , t . The smallest value of t admitting such coloring of the graphG is named equitable

chromatic number of G and denoted by χ=(G).
In the case of cubic graphs we know that

χ=(Q ) = χ(Q ), (1)

where χ=(Q ) is the equitable chromatic number of Q . This follows from

Theorem 2 (Chen, Lih, andWu, 1994, [3]). Every proper coloring of connected cubic graph can be made equitable without adding
new colors.

Chen et al.’s [3] algorithm relies on repeatedly decreasing the width of coloring (the difference between the cardinality
of the largest and smallest color class) by one until the difference is not greater than one.

In this paper we are also interested in equitable coloring of Q − I . We will present an algorithm which, given an
independent set of size k ≥ 2n/5, constructs an appropriate independent set I of size k for the BIS(Q , k) problem with
Q ∈ Q3(n). We will also prove that such cubic graphs have colorings of type (k, ⌈(n − k)/2⌉, ⌊(n − k)/2⌋), which means
that Q − I has an equitable 2-coloring. Such type of coloring is called semi-equitable, i.e. the coloring in which exactly one
color class is of any size while the cardinalities of the remaining color classes differ by at most 1. Colorings of this kind are
useful in a problem of scheduling identical jobs on three parallel uniform processors [7]. In such a model of scheduling one
of processors is faster than the remaining two, while the two slower processors are of the same speed and the conflict graph
is cubic.

2. Main results

Our main result concerning BIS(Q , k) is as follows.

Theorem 3. If Q ∈ Q3(n) and α(Q ) ≥ 2n/5, then there exists an independent set I of size k in Q such that Q − I is bipartite
for ⌊n/3⌋ ≤ k ≤ α(Q ).

Note, that this leaves the problem open for ⌈n/3⌉ ≤ α(Q ) < 2n/5.
Before we prove Theorem 3, we need some auxiliary concepts.
We consider connected cubic graphs Q ∈ Q3(n) with independence number α(Q ) ≥ 2n/5, and let I be an independent

set of size at least 2n/5. If Q − I is not bipartite, then the subgraph Q − I consists of two parts: a 2-chromatic part of all
bipartite components and a 3-chromatic part containing odd cycles (possibly with chords, bridges, pendant edges, etc.).

Definition 1. For Q ∈ Q3, the residuum R(I) of Q with respect to an independent set I is the set of all odd cycles in the graph
Q − I .

For example, for the graph in Fig. 1 and given I , R(I) = {v1v2v3, v4v5v6}.
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