Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Proof of Berge's path partition conjecture for $k \ge \lambda - 3$

Dávid Herskovics*

Department of Operations Research, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary

ARTICLE INFO

Article history: Received 3 November 2014 Received in revised form 6 July 2015 Accepted 31 July 2015 Available online 28 August 2015

Keywords: Directed graph Path partition Berge's path partition conjecture

ABSTRACT

Let *D* be a digraph. A *path partition* of *D* is called *k*-optimal if the sum of the *k*-norms of its paths is minimal. The *k*-norm of a path *P* is min(|V(P)|, k). Berge's path partition conjecture claims that for every *k*-optimal path partition \mathcal{P} there are *k* disjoint stable sets orthogonal to \mathcal{P} . For general digraphs the conjecture has been proven for $k = 1, 2, \lambda - 1, \lambda$, where λ is the length of a longest path in the digraph. In this paper we prove the conjecture for $\lambda - 2$ and $\lambda - 3$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let D = (V, A) be a digraph. A path partition of D is a set of disjoint (directed) paths P_1, P_2, \ldots, P_m for which $V(P_1) \cup V(P_2) \cup \cdots \cup V(P_m) = V$. Throughout the paper by path we always mean directed path and a single vertex is also considered to be a path. Let \mathcal{P} be a path partition and \mathcal{S} be a set of k disjoint stable sets. We say that \mathcal{P} and \mathcal{S} are *orthogonal* if each path P_i intersects as many of the k stable sets as possible, i.e. $\min(|V(P_i)|, k)$. The Greene–Kleitman theorem [5] has shown that if the digraph is acyclic and transitive (i.e. represents a partially ordered set), then for each positive integer k and for each path partition \mathcal{P} minimizing $\sum \min(|V(P_i)|, k)$ there are k disjoint stable sets orthogonal to \mathcal{P} . In 1982, Berge made his conjecture claiming the same for all digraphs [1].

The conjecture is known to be true for acyclic digraphs [6] and for $k \ge \lambda - \sqrt{\lambda}$ (where λ is the cardinality of a longest path in *D*) for strongly connected digraphs [9]. However, for general digraphs only four cases are known: $k = 1, 2, \lambda - 1, \lambda$ [4,2,9,7,3].

In this paper we introduce a new variation of the stability number and prove a min–max theorem which directly generalizes the Greene–Kleitman theorem for general directed graphs. We then use this result to prove the path partition conjecture for $k \ge \lambda - 3$.

We use the following definitions and notations:

Definition 1. The *k*-norm of a path partition $\mathcal{P} = \{P_1, \ldots, P_m\}$ is defined by:

 $|\mathcal{P}|_k = \sum \min(|V(P_i)|, k).$

A path partition is *k*-optimal if its *k*-norm is minimal.

http://dx.doi.org/10.1016/j.dam.2015.07.039 0166-218X/© 2015 Elsevier B.V. All rights reserved.

CrossMark

^{*} Correspondence to: Csejtei u. 18, H-1025, Hungary. Tel.: +36 20 5696015. E-mail address: huncros@gmail.com.

Definition 2. For a digraph D, $\pi_k(D)$ denotes $|\mathcal{P}|_k$ where \mathcal{P} is a k-optimal path partition of D.

Definition 3. Let \mathcal{P} be a path partition and S^1, \ldots, S^k disjoint stable sets. We say that S^1, \ldots, S^k are *orthogonal* to \mathcal{P} if each path P of \mathcal{P} intersects exactly $\min(|V(P)|, k)$ sets of S^1, \ldots, S^k .

Remark 1. Let \mathcal{P} be a path partition and S^1, \ldots, S^k k disjoint stable sets orthogonal to \mathcal{P} . Then we have $\sum |S^i| \ge |\mathcal{P}|_k$. Indeed,

$$\sum_{i} |S^{i}| = \sum_{P \in \mathcal{P}} \sum_{i} |V(P) \cap S^{i}| \ge \sum_{P \in \mathcal{P}} \min(|V(P)|, k) = |\mathcal{P}|_{k}.$$

Definition 4. Let \mathcal{P} be a path partition. We denote by $\mathcal{P}^{\leq k}$ the set of paths in \mathcal{P} with cardinality at most k. Similarly we denote by $\mathcal{P}^{\geq k}$ the set of paths in \mathcal{P} with cardinality at least k.

Conjecture 1 (Berge's path Partition Conjecture). Let *D* be a digraph and *k* a positive integer. Then for every *k*-optimal path partition \mathcal{P} there are *k* disjoint stable sets orthogonal to \mathcal{P} .

Finding a *k*-optimal path partition in general digraphs is NP-complete as $\pi_k(D) = k$ for any k < n if and only if there is a Hamiltonian path in *D*. However, if we also allow cycles in our partition and thus consider path-cycle partitions, then finding a *k*-optimal path-cycle partition and *k* disjoint stable sets orthogonal to its paths can be done in polynomial time. In [3] E. Berger and I.B-A. Hartman gave a common proof for the $k = 1, \lambda - 1, \lambda$ cases by searching *k*-optimal path-cycle partitions in subdigraphs where a *k*-optimal path-cycle partition will contain no cycle and thus will be a path partition.

Our approach is similar in that aspect but follows a different path. We prove a min–max theorem between the *k*-optimal path–cycle partitions and a variation of stability number. Then we use it on a suitable maximal acyclic subdigraph to prove that for a *k*-optimal path partition with each of its paths either not longer than k + 1 vertices or not shorter than $\lambda - 1$ vertices, there are *k* disjoint stable sets orthogonal to it. As a special case of this result we will get that if $k \ge \lambda - 3$, then for any path partition we can either find *k* disjoint stable sets orthogonal to it or find a better path partition.

2. A min-max theorem

As stated above finding a *k*-optimal path partition is NP-hard. So instead we use a similar but easier to handle structure: the *k*-optimal path-cycle partitions.

On the other hand in Remark 1 we have seen that if S^1, S^2, \ldots, S^k are *k* disjoint stable sets orthogonal to a path partition \mathcal{P} then $\sum |S^i| \ge |\mathcal{P}_k]$. Finding *k* disjoint stable sets such that the sum of their cardinality is at least *m* (where *m* is an input) is also NP-hard. So again we choose to replace it with a notion similar enough to be of use for us but easier to handle.

The advantage of this approach is that we can prove a min-max theorem for this easier to handle structures. In the next section we use this min-max theorem to prove our result for the original hard to handle structures.

Definition 5. The *k*-norm of a path-cycle partition $\mathcal{P}^c = \{P_1, \ldots, P_r, C_1, \ldots, C_t\}$ where P_i are paths and C_i are cycles is the following:

$$|\mathcal{P}^{c}|_{k} = \sum_{i=1}^{r} \min(|V(P_{i})|, k).$$

A path–cycle partition is *k*-optimal if its *k*-norm is minimal.

Definition 6. Let *D* be a digraph. Then $\pi_k^c(D) = |\mathcal{P}^c|_k$ where \mathcal{P}^c is a *k*-optimal path-cycle partition of *D*.

Let *S* be a stable set in the digraph D = (V, A). We call a vertex set $S_{cut} \subseteq V$ an *S*-cut set (or just cut-set if *S* is unambiguous) if $S \cap S_{cut} = \emptyset$ and all directed paths from *S* to *S* contain a vertex from S_{cut} as an internal point – we say S_{cut} cuts every *S* to *S* dipath. The pair (S, S_{cut}) is called *stable-cut pair*. For a pair of stable set *S* and one of its cut-sets S_{cut} , we use the notation $\langle S, S_{cut} \rangle = |S| - |S_{cut}|$.

Definition 7. An (S, S_{cut}) stable-cut pair is *optimal* if (S, S_{cut}) is the largest possible.

Definition 8. Two stable-cut pairs (S^1, S^1_{cut}) and (S^2, S^2_{cut}) are *disjoint* if S^1 and S^2 are disjoint.

Download English Version:

https://daneshyari.com/en/article/418466

Download Persian Version:

https://daneshyari.com/article/418466

Daneshyari.com