Proof of Berge's path partition conjecture for $k \geq \lambda-3$

Dávid Herskovics*
Department of Operations Research, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/C, H-1117, Hungary

ARTICLE INFO

Article history:

Received 3 November 2014
Received in revised form 6 July 2015
Accepted 31 July 2015
Available online 28 August 2015

Keywords:

Directed graph
Path partition
Berge's path partition conjecture

Abstract

Let D be a digraph. A path partition of D is called k-optimal if the sum of the k-norms of its paths is minimal. The k-norm of a path P is $\min (|V(P)|, k)$. Berge's path partition conjecture claims that for every k-optimal path partition \mathcal{P} there are k disjoint stable sets orthogonal to \mathcal{P}. For general digraphs the conjecture has been proven for $k=1,2, \lambda-1, \lambda$, where λ is the length of a longest path in the digraph. In this paper we prove the conjecture for $\lambda-2$ and $\lambda-3$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let $D=(V, A)$ be a digraph. A path partition of D is a set of disjoint (directed) paths $P_{1}, P_{2}, \ldots, P_{m}$ for which $V\left(P_{1}\right) \cup$ $V\left(P_{2}\right) \cup \cdots \cup V\left(P_{m}\right)=V$. Throughout the paper by path we always mean directed path and a single vertex is also considered to be a path. Let \mathcal{P} be a path partition and δ be a set of k disjoint stable sets. We say that \mathcal{P} and s are orthogonal if each path P_{i} intersects as many of the k stable sets as possible, i.e. $\min \left(\left|V\left(P_{i}\right)\right|, k\right)$. The Greene-Kleitman theorem [5] has shown that if the digraph is acyclic and transitive (i.e. represents a partially ordered set), then for each positive integer k and for each path partition \mathcal{P} minimizing $\sum \min \left(\left|V\left(P_{i}\right)\right|, k\right)$ there are k disjoint stable sets orthogonal to \mathcal{P}. In 1982, Berge made his conjecture claiming the same for all digraphs [1].

The conjecture is known to be true for acyclic digraphs [6] and for $k \geq \lambda-\sqrt{\lambda}$ (where λ is the cardinality of a longest path in D) for strongly connected digraphs [9]. However, for general digraphs only four cases are known: $k=1,2, \lambda-1, \lambda$ [4,2,9,7,3].

In this paper we introduce a new variation of the stability number and prove a min-max theorem which directly generalizes the Greene-Kleitman theorem for general directed graphs. We then use this result to prove the path partition conjecture for $k \geq \lambda-3$.

We use the following definitions and notations:

Definition 1. The k-norm of a path partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{m}\right\}$ is defined by:

$$
|\mathcal{P}|_{k}=\sum \min \left(\left|V\left(P_{i}\right)\right|, k\right)
$$

A path partition is k-optimal if its k-norm is minimal.

[^0]http://dx.doi.org/10.1016/j.dam.2015.07.039
0166-218X/© 2015 Elsevier B.V. All rights reserved.

Definition 2. For a digraph $D, \pi_{k}(D)$ denotes $|\mathcal{P}|_{k}$ where \mathcal{P} is a k-optimal path partition of D.

Definition 3. Let \mathcal{P} be a path partition and S^{1}, \ldots, S^{k} disjoint stable sets. We say that S^{1}, \ldots, S^{k} are orthogonal to \mathcal{P} if each path P of \mathcal{P} intersects exactly $\min (|V(P)|, k)$ sets of S^{1}, \ldots, S^{k}.

Remark 1. Let \mathcal{P} be a path partition and $S^{1}, \ldots, S^{k} k$ disjoint stable sets orthogonal to \mathcal{P}. Then we have $\sum\left|S^{i}\right| \geq|\mathcal{P}|_{k}$. Indeed,

$$
\sum_{i}\left|S^{i}\right|=\sum_{P \in \mathcal{P}} \sum_{i}\left|V(P) \cap S^{i}\right| \geq \sum_{P \in \mathcal{P}} \min (|V(P)|, k)=|\mathscr{P}|_{k} .
$$

Definition 4. Let \mathscr{P} be a path partition. We denote by $\mathcal{P}^{\leq k}$ the set of paths in \mathcal{P} with cardinality at most k. Similarly we denote by $\mathcal{P}^{\geq k}$ the set of paths in \mathcal{P} with cardinality at least k.

Conjecture 1 (Berge's path Partition Conjecture). Let D be a digraph and k a positive integer. Then for every k-optimal path partition \mathcal{P} there are k disjoint stable sets orthogonal to \mathcal{P}.

Finding a k-optimal path partition in general digraphs is NP-complete as $\pi_{k}(D)=k$ for any $k<n$ if and only if there is a Hamiltonian path in D. However, if we also allow cycles in our partition and thus consider path-cycle partitions, then finding a k-optimal path-cycle partition and k disjoint stable sets orthogonal to its paths can be done in polynomial time. In [3] E. Berger and I.B-A. Hartman gave a common proof for the $k=1, \lambda-1, \lambda$ cases by searching k-optimal path-cycle partitions in subdigraphs where a k-optimal path-cycle partition will contain no cycle and thus will be a path partition.

Our approach is similar in that aspect but follows a different path. We prove a min-max theorem between the k-optimal path-cycle partitions and a variation of stability number. Then we use it on a suitable maximal acyclic subdigraph to prove that for a k-optimal path partition with each of its paths either not longer than $k+1$ vertices or not shorter than $\lambda-1$ vertices, there are k disjoint stable sets orthogonal to it. As a special case of this result we will get that if $k \geq \lambda-3$, then for any path partition we can either find k disjoint stable sets orthogonal to it or find a better path partition.

2. A min-max theorem

As stated above finding a k-optimal path partition is NP-hard. So instead we use a similar but easier to handle structure: the k-optimal path-cycle partitions.

On the other hand in Remark 1 we have seen that if $S^{1}, S^{2}, \ldots, S^{k}$ are k disjoint stable sets orthogonal to a path partition \mathcal{P} then $\left.\sum\left|S^{i}\right| \geq \mid \mathcal{P}_{k}\right]$. Finding k disjoint stable sets such that the sum of their cardinality is at least m (where m is an input) is also NP-hard. So again we choose to replace it with a notion similar enough to be of use for us but easier to handle.

The advantage of this approach is that we can prove a min-max theorem for this easier to handle structures. In the next section we use this min-max theorem to prove our result for the original hard to handle structures.

Definition 5. The k-norm of a path-cycle partition $\mathcal{P}^{c}=\left\{P_{1}, \ldots, P_{r}, C_{1}, \ldots, C_{t}\right\}$ where P_{i} are paths and C_{i} are cycles is the following:

$$
\left|\mathcal{P}^{c}\right|_{k}=\sum_{i=1}^{r} \min \left(\left|V\left(P_{i}\right)\right|, k\right)
$$

A path-cycle partition is k-optimal if its k-norm is minimal.

Definition 6. Let D be a digraph. Then $\pi_{k}^{c}(D)=\left|\mathcal{P}^{c}\right|_{k}$ where \mathcal{P}^{c} is a k-optimal path-cycle partition of D.
Let S be a stable set in the digraph $D=(V, A)$. We call a vertex set $S_{\text {cut }} \subseteq V$ an S-cut set (or just cut-set if S is unambiguous) if $S \cap S_{c u t}=\emptyset$ and all directed paths from S to S contain a vertex from $S_{c u t}$ as an internal point - we say $S_{c u t}$ cuts every S to S dipath. The pair $\left(S, S_{c u t}\right)$ is called stable-cut pair. For a pair of stable set S and one of its cut-sets $S_{c u t}$, we use the notation $\left\langle S, S_{c u t}\right\rangle=|S|-\left|S_{c u t}\right|$.

Definition 7. An ($S, S_{c u t}$) stable-cut pair is optimal if $\left\langle S, S_{c u t}\right\rangle$ is the largest possible.
Definition 8. Two stable-cut pairs $\left(S^{1}, S_{c u t}^{1}\right)$ and $\left(S^{2}, S_{\text {cut }}^{2}\right)$ are disjoint if S^{1} and S^{2} are disjoint.

https://daneshyari.com/en/article/418466

Download Persian Version:

https://daneshyari.com/article/418466

Daneshyari.com

[^0]: * Correspondence to: Csejtei u. 18, H-1025, Hungary. Tel.: +36 205696015.

 E-mail address: huncros@gmail.com.

