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a b s t r a c t

The Maximum Weight Independent Set (MWIS) problem on graphs with vertex weights
asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity
of the MWIS problem for P6-free graphs, and for S1,2,2-free graphs are unknown. In this
note, we give a proof for the solvability of the MWIS problem for (P6, S1,2,2, co-chair)-free
graphs in polynomial time, by analyzing the structure and the MWIS problem in various
subclasses of (P6, S1,2,2, co-chair)-free graphs. These results extend some known results in
the literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a graph G, an independent (or stable) set is a subset of mutually nonadjacent vertices in G. TheMaximum Independent
Set (MIS) problem asks for an independent set of G with maximum cardinality. The Maximum Weight Independent Set
(MWIS) problem asks for an independent set of total maximumweight in the given graph Gwith vertex weight function w
on V (G). The M(W)IS problem ([GT20] in [19]) is one of the fundamental algorithmic graph problems; it frequently occurs
as a subproblem in models in computer science, bioinformatics, operations research and other fields. Also, the problem has
numerous applications, including train dispatching [17] and data mining [37]. The M(W)IS problem is well known to be
NP-complete in general and hard to approximate; it remains NP-complete even on restricted classes of graphs.

If F is a family of graphs, we say that a graph G is F -free if it contains no induced subgraph isomorphic to any member
of F . Let Kn, Pn and Cn denote respectively the complete graph, the path, and the cycle on n vertices. Given a graph F , let
kF denote the disjoint union of k copies of F . Alekseev [1] proved that the M(W)IS problem remains NP-complete on H-free
graphs whenever H is connected, but neither a path nor a subdivision of the claw (K1,3). On the other hand, the M(W)IS
problem is known to be solvable in polynomial time on many graph classes such as: perfect graphs [21]; 2K2-free graphs
[16]; claw-free graphs [33]; and fork-free graphs [30].

Here we focus on graphs without long induced paths and a subdivision of a claw. For integers i, j, k ≥ 1, let Si,j,k denote a
tree with exactly three vertices of degree one, being at distance i, j and k from the unique vertex of degree three. The graph
S1,1,1 is called a claw and S1,1,2 is called a chair or fork. Also, note that Si,j,k is a subdivision of a claw.

A diamond is a graph with vertex set {a, b, c, d} and edge set {ab, ac, bc, bd, cd}. A gem is a graph with vertex set
{a, b, c, d, e} and edge set {ab, bc, cd, ae, be, ce, de}. A house is a graph that is isomorphic to the complement of P5. See
Fig. 1 for some special graphs that we use in this paper.
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Fig. 1. Some special graphs.

As a natural generalization of the well studied P4-free graphs, 2K2-free graphs and semi-P4-sparse graphs (being the
class of (P5, house, co-chair)-free graphs [18]), the class of Pk-free graphs (k ≥ 5), the class of S1,j,k-free graphs (j, k ≥ 2),
and the class of S1,1,k-free graphs (k ≥ 3) have received attention. The complexity of the MWIS problem for P5-free graphs
was unknown for several decades, though the problem is shown to be solvable in polynomial time in various subclasses
of P5-free graphs [5,25]. Recently, Lokshtanov, Vatshelle and Villanger [29] gave a O(n12m) time algorithm for the MWIS
problem in P5-free graphs via minimal triangulations, and they showed an O(n18m) time algorithm for the MWIS problem
on P5-free graphs. However, the complexity of the MWIS problem is unknown for the class of P6-free graphs, for the class
of S1,2,2-free graphs, and for the class of S1,1,3-free graphs. In particular, the class of P6-free graphs, the class of S1,2,2-free
graphs, and the class of S1,1,3-free graphs constitute the minimal class, defined by forbidding a single connected subgraph
on six vertices, for which the computational complexity of M(W)IS problem is unknown. Recently, Lokshtanov, Pilipczuk
and van Leeuwen [28] showed that there is an nO(log2 n)-time, polynomial-space algorithm for MWIS on P6-free graphs.
This implies that MWIS on P6-free graphs is not NP-complete, unless all problems in NP can be solved in quasi-polynomial
time. On the other hand, the M(W)IS problem can be efficiently solved in many subclasses of P6-free graphs, subclasses of
S1,2,2-free graphs, and subclasses of S1,1,3-free graphs: (P6, triangle)-free graphs [10], (P6, K1,p)-free graphs [31], (P6, C4)-free
[9,26,34], (P6, diamond)-free graphs [35], (P6, banner)-free graphs [26], (P6, co-banner)-free graphs [36], (S1,2,2, banner)-
free graphs [20], (S1,1,3, banner)-free graphs [27], and (S1,2,2, bull)-free graphs [27]. Note that the class of P5-free graphs
is a subclass of P6-free graphs, S1,2,2-free graphs, and S1,1,3-free graphs. Also, the class of fork-free graphs is a subclass of
S1,2,2-free graphs, and S1,1,3-free graphs.

Graph decompositions such as clique separator decomposition andmodular decomposition (defined below) play a crucial
role in structural graph theory and in designing efficient graph algorithms. A clique in a graph G is a subset of pairwise
adjacent vertices in G. A clique separator of a graph G is a clique K in G such that G \K has more connected components than
G. An atom is a graph without clique separator. A clique separator decomposition (CSD) of a graph G is a decomposition tree
of G whose leaves are atoms. Whitesides [39] proved that CSD of a graph can be obtained in polynomial time; Tarjan [38]
showed that CSD can be applied to various optimization problems such as Minimum Fill-In, Coloring, Maximum Clique,
and the MWIS problem; the problem can be solved efficiently on the graph if it is solvable efficiently on atoms. Using this
approach, it is shown that MWIS is solvable in polynomial time for several classes of graphs recently; see [2–4,8,11,13,25].

We follow the approach developed recently by Brandstädt andGiakoumakis [8], which combinesmodular decomposition
[32] and clique separator decomposition, and prove that the MWIS problem can be solved in polynomial time in the class of
(P6, co-chair, S1,2,2)-free graphs by analyzing the atomic structure and the MWIS problem in several subclasses of that class.
These results extend the following known results: the aforementioned results for P4-free graphs, semi-P4-sparse graphs [18],
(P5, diamond)-free graphs [6], and (P5, co-chair)-free graphs [14,25].

2. Notation, terminology and preliminaries

For notations and terminology, we follow [12]. Let G be a finite, undirected and simple graph with vertex-set V (G) and
edge-set E(G). We let |V (G)| = n and |E(G)| = m. If S ⊆ V (G), then G[S] denote the subgraph induced by S in G. For a vertex
v ∈ V (G), the neighborhood N(v) of v is the set {u ∈ V (G) | uv ∈ E(G)}. The neighborhood N(X) of a subset X ⊆ V (G) is the
set {u ∈ V (G) \ X : u is adjacent to a vertex of X}. Given a subgraph H of G and v ∈ V (G) \ V (H), let NH(v) denote the set
N(v) ∩ V (H), and for X ⊆ V (G) \ V (H), let NH(X) denote the set N(X) ∩ V (H). For any two subsets S, T ⊆ V (G), we say that
S is complete to T if every vertex in S is adjacent to every vertex in T . We say that S is anticomplete to T if there is no edge
between S and T .

Homogeneous sets and modular decomposition

A vertex z ∈ V (G) distinguishes two other vertices x, y ∈ V (G) if z is adjacent to one of them and not adjacent to the
other. A set M ⊆ V (G) is a homogeneous set in G if no vertex from V (G) \ M distinguishes two vertices from M . The trivial
homogeneous sets of G are V (G), ∅, and all one-elementary vertex sets. A graph G is prime if it has only trivial homogeneous
sets. Note that prime graphs are connected. We will use the following theorem by Lozin and Milanič [30].



Download English Version:

https://daneshyari.com/en/article/418470

Download Persian Version:

https://daneshyari.com/article/418470

Daneshyari.com

https://daneshyari.com/en/article/418470
https://daneshyari.com/article/418470
https://daneshyari.com

