Induced cycles in triangle graphs

Aparna Lakshmanan $S^{\text {a }}$, Csilla Bujtás ${ }^{\mathrm{b}, \mathrm{c}, *}$, Zsolt Tuza ${ }^{\text {b,c }}$
a Department of Mathematics, St. Xavier's College for Women, Aluva, India
${ }^{\mathrm{b}}$ Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary
${ }^{\text {c }}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary

ARTICLE INFO

Article history:

Received 30 October 2014
Received in revised form 10 December 2015
Accepted 16 December 2015
Available online 13 January 2016

Keywords:

Triangle graph
F-free graph
Perfect graph
Tuza's Conjecture

Abstract

The triangle graph of a graph G, denoted by $\mathcal{T}(G)$, is the graph whose vertices represent the triangles (K_{3} subgraphs) of G, and two vertices of $\mathcal{T}(G)$ are adjacent if and only if the corresponding triangles share an edge. In this paper, we characterize graphs whose triangle graph is a cycle and then extend the result to obtain a characterization of C_{n}-free triangle graphs. As a consequence, we give a forbidden subgraph characterization of graph G for which $\mathcal{T}(G)$ is a tree, a chordal graph, or a perfect graph. For the class of graphs whose triangle graph is perfect, we verify a conjecture of the third author concerning packing and covering of triangles.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a simple undirected graph G, a triangle is a complete subgraph on three vertices. The triangle graph of G, denoted by $\mathcal{T}(G)$, is the graph whose vertices represent the triangles of G, and two vertices of $\mathcal{T}(G)$ are adjacent if and only if the corresponding triangles of G share an edge. This notion was introduced independently several times under different names and in different contexts [$16,22,8,4$]. One fundamental motivation is its obvious relation to the important class of line graphs.

In a more general setting, for a $k \geq 1$, the k-line graph $L_{k}(G)$ of G is a graph which has vertices corresponding to the K_{k} subgraphs of G, and two vertices are adjacent in $L_{k}(G)$ if the represented K_{k} subgraphs of G have $k-1$ vertices in common. Hence, 2-line graph means line graph in the usual sense, whilst 3-line graph is just the triangle graph, which is our current subject.

Beineke's classic result [5] gave a characterization of 2-line graphs in terms of nine forbidden subgraphs. This implies that 2-line graphs can be recognized in polynomial time. In contrast to this, as proved very recently in [2], the recognition problem of triangle graphs (and also, that of k-line graphs for each $k \geq 3$) is NP-complete. In the same paper [2], a necessary and sufficient condition is given for nontrivial connected graphs G and H to ensure that their Cartesian product $G \square H$ is a triangle graph.

Further related results have been obtained by Laskar, Mulder and Novick [11]. They prove that for an 'edge-triangular' and 'path-neighborhood' graph G (that is when the open neighborhood of v induces a non-trivial path for each vertex $v \in V(G)$), the triangle graph $\mathcal{T}(G)$ is a tree if and only if G is maximal outerplanar. Also, they raise the characterization problem of a path-neighborhood graph G for which $\mathcal{T}(G)$ is a cycle [11, Problem 3]. As an immediate consequence of our Theorem 4, we will answer this question; moreover we will give a forbidden subgraph characterization of graphs whose triangle graph is a tree.

Triangle graphs were studied from several further aspects; see e.g. [3,4,8,12-14,17-19].

[^0]
1.1. Standard definitions

Given a graph F, a graph G is called F-free if no induced subgraph of G is isomorphic to F. When \mathcal{F} is a set of graphs, G is \mathcal{F}-free if it is F-free for all $F \in \mathcal{F}$. On the other hand, when we say that a graph F is a forbidden subgraph for a class g of graphs, it means that no $G \in \mathcal{G}$ may contain any subgraph isomorphic to F.

As usual, the complement of a graph G is denoted by \bar{G}. The nth power of a graph G is the graph G^{n} whose vertex set is $V\left(G^{n}\right)=V(G)$ and two vertices are adjacent in G^{n} if and only if their distance is at most n in G. Moreover, given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we use the notation $G_{1} \vee G_{2}$ for the join of G_{1} and G_{2}, that is a graph with one copy of G_{1} and G_{2} each, being vertex-disjoint, and all the vertices of G_{1} are made adjacent with all the vertices of G_{2}. In particular, the n-wheel $W_{n}(n \geq 3)$ is a graph $K_{1} \vee C_{n}$ (where, as usual, K_{n} and C_{n} denote the n-vertex complete graph and the n-cycle, respectively). An odd wheel is a graph W_{n} where $n \geq 3$ is odd; and an odd hole in a graph is an induced n-cycle of odd length $n \geq 5$, whereas an odd anti-hole is the complement of an odd hole.

While an acyclic graph does not contain any cycles, a chordal graph is a graph which does not contain induced n-cycles for $n \geq 4$. The chromatic number $\chi(G)$ of a graph G is the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices receive the same color. A set of vertices is independent if all pairs of its vertices are non-adjacent. The independence number $\alpha(G)$ of G is the maximum cardinality of an independent vertex set in G. A clique is a complete subgraph maximal under inclusion (i.e., in our terminology different cliques in the same graph may have different size). The clique number $\omega(G)$ is the maximum number of vertices of a clique in G. The clique covering number $\theta(G)$ is the minimum cardinality of a set of cliques that covers all vertices of G. A graph G is perfect if $\chi\left(G^{\prime}\right)=\omega\left(G^{\prime}\right)$ for every induced subgraph G^{\prime} of G.

As usual, the open neighborhood $N(v)$ of v is the set of neighbors of v, whilst its closed neighborhood is $N[v]=N(v) \cup\{v\}$. In a less usual way, we also refer to the subgraphs induced by them as $N(v)$ and $N[v]$, respectively.

Throughout this paper, the notation $K_{n}-G$ will refer to the graph obtained from the complete graph K_{n} by deleting the edge set of a subgraph isomorphic to G. In this way, for instance, $K_{4}-K_{3}$ means the claw $K_{1,3}$.

1.2. New definitions and terminology

In this paper, we use the following special terminology for some types of graphs.

- The elementary types are:
(a) the wheel W_{4},
(b) the square C_{n}^{2} of a cycle of length $n \geq 7$.
- The supplementary types are the following ones. (For illustration, see Fig. 1.)
(A) $S_{A}=\left(V_{A}, E_{A}\right)$, where $V_{A}=\left\{v_{i}, u_{i} \mid 1 \leq i \leq 4\right\}$ and

$$
E_{A}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 4\right\} \cup\left\{u_{i} v_{i-1}, u_{i} v_{i}, u_{i} v_{i+1} \mid 1 \leq i \leq 4\right\}
$$

(subscript addition taken modulo 4).
(B) $S_{B}=\left(V_{B}, E_{B}\right)$, where $V_{B}=\left\{v_{i} \mid 1 \leq i \leq 5\right\} \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ and

$$
E_{B}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 5\right\} \cup\left\{v_{3} v_{5}, v_{4} v_{1}\right\} \cup\left\{u_{i} v_{i-1}, u_{i} v_{i}, u_{i} v_{i+1} \mid 1 \leq i \leq 3\right\}
$$

(subscript addition taken modulo 5).
(C) $S_{C}=\left(V_{C}, E_{C}\right)$, where $V_{C}=\left\{v_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{u_{1}, u_{2}\right\}$ and

$$
E_{C}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 6\right\} \cup\left\{v_{2} v_{4}, v_{3} v_{5}, v_{4} v_{6}, v_{5} v_{1}\right\} \cup\left\{u_{i} v_{i-1}, u_{i} v_{i}, u_{i} v_{i+1} \mid i=1,2\right\}
$$

(subscript addition taken modulo 6).
(D) $S_{D}=\left(V_{D}, E_{D}\right)$, where $V_{D}=\left\{v_{i} \mid 1 \leq i \leq 6\right\} \cup\left\{u_{1}, u_{4}\right\}$ and

$$
E_{D}=\left\{v_{i} v_{i+1} \mid 1 \leq i \leq 6\right\} \cup\left\{v_{1} v_{3}, v_{2} v_{4}, v_{4} v_{6}, v_{5} v_{1}\right\} \cup\left\{u_{i} v_{i-1}, u_{i} v_{i}, u_{i} v_{i+1} \mid i=1,4\right\}
$$

(subscript addition taken modulo 6).
We also define two operations as follows.

- Suppose that $e=x y$ is an edge contained in exactly one triangle $x y z$, whilst $x z$ and $z y$ belong to more than one triangle. An edge splitting of e means replacing e with the 3-path $x w y$ (where w is a new vertex) and inserting the further edge $w z$.
- Let u and v be two vertices at distance at least 4 apart. The vertex sticking of u and v means removing u and v and introducing a new vertex w adjacent to the entire $N(u) \cup N(v) .{ }^{1}$

The inverses of these operations can also be introduced in a natural way.

[^1]
https://daneshyari.com/en/article/418474

Download Persian Version:

https://daneshyari.com/article/418474

Daneshyari.com

[^0]: * Corresponding author at: Department of Computer Science and Systems Technology, University of Pannonia, Veszprém, Hungary.

 E-mail addresses: aparnaren@gmail.com (A. Lakshmanan S), bujtas@dcs.uni-pannon.hu (Cs. Bujtás), tuza@dcs.uni-pannon.hu (Zs. Tuza).

[^1]: 1 'Vertex sticking' and its inverse operation were also introduced in [11].

