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1. Introduction

In a simple undirected graph G, a triangle is a complete subgraph on three vertices. The triangle graph of G, denoted
by 7 (G), is the graph whose vertices represent the triangles of G, and two vertices of 7 (G) are adjacent if and only if the
corresponding triangles of G share an edge. This notion was introduced independently several times under different names
and in different contexts [ 16,22,8,4]. One fundamental motivation is its obvious relation to the important class of line graphs.

In a more general setting, for a k > 1, the k-line graph Ly (G) of G is a graph which has vertices corresponding to the Kj
subgraphs of G, and two vertices are adjacent in L, (G) if the represented K} subgraphs of G have k — 1 vertices in common.
Hence, 2-line graph means line graph in the usual sense, whilst 3-line graph is just the triangle graph, which is our current
subject.

Beineke’s classic result [5] gave a characterization of 2-line graphs in terms of nine forbidden subgraphs. This implies
that 2-line graphs can be recognized in polynomial time. In contrast to this, as proved very recently in [2], the recognition
problem of triangle graphs (and also, that of k-line graphs for each k > 3) is NP-complete. In the same paper [2], a necessary
and sufficient condition is given for nontrivial connected graphs G and H to ensure that their Cartesian product GOH is a
triangle graph.

Further related results have been obtained by Laskar, Mulder and Novick [ 11]. They prove that for an ‘edge-triangular’ and
‘path-neighborhood’ graph G (that is when the open neighborhood of v induces a non-trivial path for each vertex v € V(G)),
the triangle graph 7 (G) is a tree if and only if G is maximal outerplanar. Also, they raise the characterization problem of a
path-neighborhood graph G for which 7 (G) is a cycle [ 11, Problem 3]. As an immediate consequence of our Theorem 4, we
will answer this question; moreover we will give a forbidden subgraph characterization of graphs whose triangle graph is a
tree.

Triangle graphs were studied from several further aspects; see e.g. [3,4,8,12-14,17-19].
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1.1. Standard definitions

Given a graph F, a graph G is called F-free if no induced subgraph of G is isomorphic to F. When ¥ is a set of graphs, G
is F-free if it is F-free for all F € . On the other hand, when we say that a graph F is a forbidden subgraph for a class § of
graphs, it means that no G € § may contain any subgraph isomorphic to F.

As usual, the complement of a graph G is denoted by G. The nth power of a graph G is the graph G" whose vertex set is
V(G") = V(G) and two vertices are adjacent in G" if and only if their distance is at most n in G. Moreover, given two graphs
G1 = (V1,Ey) and G, = (V,, E;), we use the notation G; Vv G, for the join of G; and G, that is a graph with one copy of
G1 and G, each, being vertex-disjoint, and all the vertices of G; are made adjacent with all the vertices of G,. In particular,
the n-wheel W,, (n > 3)is a graph K; Vv C, (where, as usual, K, and C, denote the n-vertex complete graph and the n-cycle,
respectively). An odd wheel is a graph W,, where n > 3 is odd; and an odd hole in a graph is an induced n-cycle of odd length
n > 5, whereas an odd anti-hole is the complement of an odd hole.

While an acyclic graph does not contain any cycles, a chordal graph is a graph which does not contain induced n-cycles
for n > 4. The chromatic number x (G) of a graph G is the minimum number of colors required to color the vertices of G in
such a way that no two adjacent vertices receive the same color. A set of vertices is independent if all pairs of its vertices are
non-adjacent. The independence number «(G) of G is the maximum cardinality of an independent vertex set in G. A clique is a
complete subgraph maximal under inclusion (i.e., in our terminology different cliques in the same graph may have different
size). The clique number w(G) is the maximum number of vertices of a clique in G. The clique covering number 0(G) is the
minimum cardinality of a set of cliques that covers all vertices of G. A graph G is perfect if x (G') = w(G') for every induced
subgraph G’ of G.

As usual, the open neighborhood N (v) of v is the set of neighbors of v, whilst its closed neighborhood is N[v] = N(v) U {v}.
In a less usual way, we also refer to the subgraphs induced by them as N(v) and N[v], respectively.

Throughout this paper, the notation K, — G will refer to the graph obtained from the complete graph K, by deleting the
edge set of a subgraph isomorphic to G. In this way, for instance, K4 — K3 means the claw K 3.

1.2. New definitions and terminology

In this paper, we use the following special terminology for some types of graphs.

e The elementary types are:
(a) the wheel W4,
(b) the square C? of a cycle of length n > 7.

e The supplementary types are the following ones. (For illustration, see Fig. 1.)
(A) Sqp = (Vy4, Eq), where V4 = {v;,u; | 1 <i <4}and

Ep = {vivigr | 1 <0 <4} U {uviog, wivg, ujvigq | 1 <0 < 4)

(subscript addition taken modulo 4).
(B) Sg = (Vs, Ep), where Vg = {v; | 1 <i <5} U {uy, up, u3} and

Eg = {vjvig1 | 1 <1 =<5} U {v3vs, vavg} U (i, wivy, vy | 1 <0 < 3}

(subscript addition taken modulo 5).
(C) Sc = (Vc, Ec), where Ve = {v; | 1 <i <6} U {uy, up} and

Ec = {vivip1 | 1 <1 < 6} U {vavs, v30s, V406, 501} U {Uvi1, Uiy, Ujvig | 1= 1, 2}

(subscript addition taken modulo 6).
(D) Sp = (Vp, Ep), where Vp = {v; | 1 <i <6} U {uy, us} and

Ep = {vjvip1 | 1 <1 <6} U {vqv3, vavs, Va6, Usv1} U {Ujvi_q, Ujv;, ujvigq | i=1,4)
(subscript addition taken modulo 6).
We also define two operations as follows.

e Suppose that e = xy is an edge contained in exactly one triangle xyz, whilst xz and zy belong to more than one triangle. An
edge splitting of e means replacing e with the 3-path xwy (where w is a new vertex) and inserting the further edge wz.

e Let u and v be two vertices at distance at least 4 apart. The vertex sticking of u and v means removing u and v and
introducing a new vertex w adjacent to the entire N(u) U N(v).!

The inverses of these operations can also be introduced in a natural way.

1 wertex sticking’ and its inverse operation were also introduced in [11].
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