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a b s t r a c t

Given two graphs G and H , assume that C = {C1, C2, . . . , Cq} is a clique cover of G and U
is a subset of V (H). We introduce a new graph operation called the clique cover product,
denoted by GC ⋆ HU , as follows: for each clique Ci ∈ C , add a copy of the graph H and
join every vertex of Ci to every vertex of U . We prove that the independence polynomial of
GC ⋆ HU

I(GC ⋆ HU
; x) = [I(H; x)]qI


G;

xI(H − U; x)
I(H; x)


,

which generalizes some known results on independence polynomials of the compound
graph introduced by Song, Staton and Wei, the corona and rooted products of graphs
obtained by Gutman and Rosenfeld, respectively. Based on this formula, we show that the
clique cover product of some graphs preserves symmetry, unimodality, log-concavity or
reality of zeros of independence polynomials. As applications we derive several known
facts and solve some open unimodality conjectures and problems in a simple and unified
manner.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Independence polynomials of graphs

For the graph theoretical terms used but not defined, we follow Bondy and Murty [4]. Let G = (V (G), E(G)) be a finite
and simple graph. An independent set in a graph G is a set of pairwise non-adjacent vertices. A maximum independent set in
G is a largest independent set and its size is denoted α(G). Let ik(G) denote the number of independent sets of cardinality k
in G. Then its generating function

I(G; x) =

α(G)
k=0

ik(G)xk, i0(G) = 1

is called the independence polynomial of G (Gutman and Harary [21]).

✩ Supported partially by the National Natural Science Foundation of China (Nos. 11201191, 11571150) and PAPD of JiangsuHigher Education Institutions.
E-mail address: bxzhu@jsnu.edu.cn.

http://dx.doi.org/10.1016/j.dam.2016.01.030
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.01.030
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.01.030&domain=pdf
mailto:bxzhu@jsnu.edu.cn
http://dx.doi.org/10.1016/j.dam.2016.01.030


B.-X. Zhu / Discrete Applied Mathematics 206 (2016) 172–180 173

1.2. Unimodality and log-concavity of polynomials

Let (ak)nk=0 be a sequence of positive real numbers. It is called unimodal if there is somem, called amode of the sequence,
such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

It is called log-concave if a2k ≥ ak−1ak+1 for all 1 ≤ k ≤ n − 1. It is called symmetric if ak = an−k for 0 ≤ k ≤ n.
Clearly, a log-concave sequence of positive numbers is unimodal (see, e.g., Brenti [6]). If (ak)nk=0 is unimodal (log-concave,

symmetric, respectively), then we also say that its generating function
n

k=0 akx
k is unimodal (log-concave, symmetric,

respectively). A mode of the sequence (ak)nk=0 is also called a mode of
n

k=0 akx
k. Unimodality and log-concavity problems

arise naturally in many branches of mathematics and have been extensively investigated. See Stanley’s survey [38] and
Brenti’s supplement [7] for various results on unimodality and log-concavity. It is well known that if the generating
function

n
k=0 akx

k has only real zeros, then by Newton’s inequalities the sequence (ak)nk=0 is log-concave and unimodal
(see [23, p. 104]). In addition, this is a classical approach to demonstrating the log-concavity in combinatorics since
polynomials arising from combinatorics are often real-rooted, see [5,33,40] for instance.

1.3. Unimodality problems of independence polynomials

There are many interesting unimodality problems in graph theory. For example, it is well known that the matching
polynomial of a graph has only real zeros [24]. The long-standing open problems on the unimodality (Read [35, p. 68])
and log-concavity (Welsh [42, p. 266]) of the chromatical polynomial of a graph has recently been solved in [26]. The
log-concavity problems of genus polynomials of graphs [12,18,19] are also interesting. On the other hand, unimodality
problems and zeros of independence polynomials have been investigated, e.g., see [1–3,8–11,13,14,22,25,28–32,34,41,43]
for an extensive literature in recent years. In fact, the independence polynomial can be regarded as a generalization of the
matching polynomial because the matching polynomial of a graph and the independence polynomial of its line graph are
identical. Wilf asked whether the independence polynomials are also unimodal. However, Alavi, Malde, Schwenk, Erdős [1]
gave a negative example. A natural problem is the following.

Problem 1.1. For what kind of graphs, are their independence polynomials unimodal or log-concave ?

In particular, in [1] they conjectured.

Conjecture 1.1. The independence polynomial of any tree or forest is unimodal.

The independence polynomials for certain special classes of graphs are unimodal and even have only real zeros (e.g.,
claw-free graphs, see [14]). Although the independence polynomial of almost every graph of order n has a nonreal zero,
the average independence polynomials always have all real and simple zeros [11]. Hence an interesting problem naturally
arises.

Problem 1.2 ([8]).When does the independence polynomial of a graph have only real zeros ?

The symmetries of the matching polynomial and the characteristic polynomial of a graph were observed (see [17,27]
for instance). Thus, we naturally study the symmetric independence polynomials. A few ways to construct graphs having
symmetric independence polynomials were given in [39]. However, the following general problem is still open.

Problem 1.3. When is the independence polynomial of a graph symmetric ?

1.4. Clique cover product and its independence polynomial

To study above Problems and Conjectures for independence polynomials, we often need to knowmany information about
the independence polynomials. In general, it is an NP-complete problem to determine the independence polynomial, since
evaluating α(G) is an NP-complete problem [16]. Thus, a classical question is how to compute the independence polynomial
of a graph. An approach to computing the independence polynomial of a graph is in term of those of its subgraphs. For
instance, one can deduce (e.g., Gutman and Harary [21]) that

I(G1 ∪ G2; x) = I(G1; x)I(G2; x), I(G1 + G2; x) = I(G1; x) + I(G2; x) − 1,

where G1 + G2 denotes the join of two disjoint graphs G1 and G2, with E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)} as the
edge set and V (G1) ∪ V (G2) as the vertex set. It is known that there are many important operations of graphs in graph
theory. Motivated by the above mentioned examples, one may further ask which operation of graphs is good to compute
the independence polynomial.
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