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a b s t r a c t

Let F be a field. For a polynomial f ∈ F[x, y], we define a bipartite graph ΓF(f ) with vertex
partition P ∪ L, P = F3

= L, and (p1, p2, p3) ∈ P is adjacent to [l1, l2, l3] ∈ L if and only if

p2 + l2 = p1l1 and p3 + l3 = f (p1, l1).

It is known that the graph ΓF(xy2) has no cycles of length less than eight. The main result
of this paper is that ΓF(xy2) is the only graph ΓF(f ) with this property when F is an
algebraically closed field of characteristic zero; i.e. over such a field F, every graph ΓF(f )
with no cycles of length less than eight is isomorphic to ΓF(xy2). We also prove related
uniqueness results for some polynomials f over infinite families of finite fields.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the greatest number of edges in a graph of order n of girth (i.e. the shortest cycle length) eight is of
magnitude n1+ 1

3 . The upper bound comes from Bondy–Simonovits [2] and the lower bound from generalized quadrangles
(which will be defined later) or their subgraphs. The primary motivation for this paper is the desire to prove the uniqueness
(in a certain sense) of the existing constructions for the lower bound.

For definitions related to graphs, we refer the reader to Bollobás [1]. Our primary object of study in this paper is defined
as follows. For a field F and two polynomials f2, f3 ∈ F[x, y], let P and L be two copies of the 3-dimensional vector
space F3. Consider a bipartite graph ΓF(f2, f3) with vertex partitions P and L and with edges defined as follows: for every
(p) = (p1, p2, p3) ∈ P and every [l] = [l1, l2, l3] ∈ L, {(p), [l]} = (p)[l] is an edge in ΓF(f2, f3) if

p2 + l2 = f2(p1, l1)
p3 + l3 = f3(p1, l1).

It turns out that the graph ΓF(xy, xy2) has girth eight; furthermore, when F is finite, it is isomorphic to an induced subgraph
of a classical generalized quadrangle of order q (see Section 6 for details).
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This brings up a natural question: is ΓF(xy, xy2) the unique (up to isomorphism) girth eight graph of the form ΓF(f2, f3)?
For some uniqueness results over finite fields of odd characteristic, see Dmytrenko [4], Dmytrenko, Lazebnik and

Williford [5], Kronenthal [8], Hou, Lappano, and Lazebnik [7], and references therein. The approach in these papers was
to use properties of polynomials over finite fields. In this paper we use another approach.We let F be an algebraically closed
field of characteristic zero, for example the field of complex numbers C. For such F, we prove the uniqueness of ΓF(xy, xy2)
for all graphs in ‘close vicinity’, i.e. all graphs of the form ΓF(xy, f ). We then prove related uniqueness results for some
polynomials f over infinite families of finite fields.

The main results of this paper are as follows.

Theorem 1.1. Let F be an algebraically closed field of characteristic zero. Suppose f ∈ F[x, y] and the graph ΓF(xy, f ) has girth
at least eight. Then ΓF(xy, f ) is isomorphic to ΓF(xy, xy2).

The following theorem is an analog of Theorem 1.1 for finite fields Fq of odd characteristic p and polynomials of ‘small’
degree. Let M = M(p) be the least common multiple of the integers 1, 2, . . . , p − 2. The function M is defined in this way
so that all polynomials over Fq of degree at most p − 2 have a root in FqM .

Theorem 1.2. Let q be a power of a prime p, p ≥ 5. Suppose f ∈ Fq[x, y] has degree at most p − 2 with respect to each of x
and y. Then for all positive integers r, every graph ΓqMr (xy, f ) of girth at least eight is isomorphic to ΓqMr (xy, xy2).

The prime p = 3 (soM = 1) is excluded, as it is easy to argue in this case that every Γqr (xy, f ) has girth six.
For a polynomial f =


0≤i,j≤n aijx

iyj ∈ Z[x, y], let f̂ =


0≤i,j≤n âijx
iyj ∈ Fp[x, y], where âij is the image of aij with respect

to the canonical homomorphism Z → Z/pZ.

Corollary 1.3 (to Theorem 1.1). Suppose f ∈ Z[x, y]. Then there exists a positive constant c = c(f ) such that for every prime
p > c(f ), there exists an integer s = s(f , p) such that for all positive integers r, and q = psr , every graph Γq(xy, f̂ ) of girth at
least eight is isomorphic to Γq(xy, xy2).

Wewish to comment that in Theorem 1.1, we consider all polynomials f over a given algebraically closed field of charac-
teristic zero. However, in Corollary 1.3, we fix one polynomial with integer coefficients and state the existence of infinitely
many characteristics p, and infinitely many finite fields of characteristic p, over which an analog of Theorem 1.1 holds.

This paper is organized as follows. In Section 2 we provide a description of 4- and 6-cycles in graphs ΓF(f2, f3) and some
isomorphismsbetween these graphs. In Sections 3 and4,wepresent proofs of Theorems1.1 and1.2, respectively. In Section 5
we discuss the Lefschetz Principle and prove Corollary 1.3. In Section 6, we explain the relationship between the graphs
Γq(f2, f3) and generalized quadrangles, make some concluding remarks, and mention open problems.

2. Cycles and isomorphisms of graphs ΓF(f2, f3)

Let ΓF(f2, f3) be the graph defined in Section 1. If two vertices a, b in a graph are adjacent, we will write a ∼ b. Let us
describe cycles of length four and six in ΓF(f2, f3). If the graph contains a 4-cycle

(a1, a2, a3) ∼ [x1, x2, x3] ∼ (b1, b2, b3) ∼ [y1, y2, y3] ∼ (a1, a2, a3), (1)

then (a1, a2, a3) ∼ [x1, x2, x3] implies that xi = fi(a1, x1) − ai for i = 2, 3. Furthermore, [x1, x2, x3] ∼ (b1, b2, b3) implies
that bi = fi(b1, x1) − xi = fi(b1, x1) − fi(a1, x1) + ai for i = 2, 3. Similarly, we have:

yi = fi(b1, y1) − fi(b1, x1) + fi(a1, x1) − ai
ai = fi(a1, y1) − fi(b1, y1) + fi(b1, x1) − fi(a1, x1) + ai.

This implies that in order for this 4-cycle to exist, we must have

fi(a1, y1) − fi(b1, y1) + fi(b1, x1) − fi(a1, x1) = 0

for i = 2, 3. Similarly in order for a 6-cycle

(a1, a2, a3) ∼ [x1, x2, x3] ∼ (b1, b2, b3) ∼ [y1, y2, y3]
∼ (c1, c2, c3) ∼ [z1, z2, z3] ∼ (a1, a2, a3), (2)

to exist in ΓF(f2, f3), we must have

fi(a1, z1) − fi(c1, z1) + fi(c1, y1) − fi(b1, y1) + fi(b1, x1) − fi(a1, x1) = 0.

To have a convenient notation for the alternating sums above, we define the following functions on the polynomial rings:

∆2 : F[s1, s2] → F[t1, t2, t3, t4]
f (s1, s2) → f (t1, t3) − f (t2, t3) + f (t2, t4) − f (t1, t4),
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