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a b s t r a c t

Let G = (V , E) be a graph and φ be a total k-coloring of G by using the color set {1, . . . , k}.
Let


φ(u) denote the sum of the color of the vertex u and the colors of all incident edges

of u. A k-neighbor sum distinguishing total coloring of G is a total k-coloring of G such that
for each edge uv ∈ E(G),


φ(u) ≠


φ(v). By χ ′′

Σ (G), we denote the smallest value k in
such a coloring of G. Pilśniak and Woźniak first introduced this coloring and conjectured
that χ ′′

Σ (G) ≤ ∆(G) + 3 for any simple graph G. Let Lz(z ∈ V ∪ E) be a set of lists of
integer numbers, each of size k. The smallest k for which for any specified collection of
such lists, there exists a neighbor sum distinguishing total coloring using colors from Lz
for each z ∈ V ∪ E is called the neighbor sum distinguishing total choosability of G, and
denoted by ch′′

Σ (G). In this paper, we prove that ch′′
Σ (G) ≤ ∆(G) + 3 for planar graphs

without 4-cycles with∆(G) ≥ 7. This implies that Pilśniak andWoźniak’ conjecture is true
for planar graphs without 4-cycles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Only simple graphs are considered in this paper. The terminology and notation used but undefined in this paper can be
found in [2]. A plane graph is a particular drawing of a planar graph in Euclidean plane. For a plane graph G, we denote its
vertex set, edge set, face set, maximum degree and minimum degree by V (G), E(G), F(G), ∆(G) and δ(G), respectively. Let
dG(v) or simply d(v) denote the degree of a vertex v in G. A vertex v is called an l-vertex if d(v) = l, similarly, an l+-vertex or
an l−-vertex if d(v) ≥ l or d(v) ≤ l. A face of a plane graph is said to be incident with all edges and vertices on its boundary.
Two faces are adjacent if they have an edge in common. The degree of a face f of plane graph G, denoted by dG(f ), is the
number of edges incident with it, where each cut-edge is counted twice. A k-face is a face of degree k. A k-cycle is a cycle of
length k. A triangle is synonymouswith a 3-face or a 3-cycle. A triangle v1v2v3 is called an (α, β, γ )-cycle, if v1 is an α-vertex,
v2 is a β-vertex and v3 is a γ -vertex.

Given a graph G = (V , E) and a positive integer k, a total k-coloring of G is a proper coloring φ : V ∪ E → {1, . . . , k},
where a proper coloring means every pair of adjacent or incident elements receives different numbers. Given a total
k-coloring φ of G, let Cφ(v) denote the set of colors of the edges incident to v and the color of v. A total k-coloring is called
adjacent vertex distinguishing if for each edge uv, Cφ(u) is different from Cφ(v). A smallest such k is called the adjacent vertex
distinguishing total chromatic number of G, denoted by χ ′′

a (G). Zhang et al. [18] put forward the following conjecture.
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Conjecture 1.1 ([18]). For any graph G with at least two vertices, χ ′′
a (G) ≤ ∆(G) + 3.

Conjecture 1.1 has been proved for a few special cases, such as subcubic graphs, K4-minor free graphs and some special
planar graphs, see [3,7,13,16,17]. Recently, colorings and labelings related to sums of the colors have been studied widely,
see the survey paper [12]. In a total k-coloring of G, let


φ(v) denote the sum of colors of the edges incident to v and the

color of v. If for each edge uv ∈ E(G), we have


φ(u) ≠


φ(v), we call such total k-coloring a k-neighbor sum distinguishing
total coloring. The smallest number k is called the neighbor sum distinguishing total chromatic number of G, denoted by χ ′′

Σ (G).
For neighbor sum distinguishing total colorings, we have the following conjecture due to Pilśniak and Woźniak [9].

Conjecture 1.2 ([9]). For any graph G with at least two vertices, χ ′′
Σ (G) ≤ ∆(G) + 3.

Clearly, Conjecture 1.2 implies Conjecture 1.1 since it is easy to check that χ ′′
a (G) ≤ χ ′′

Σ (G). Pilśniak and Woźniak [9]
proved that Conjecture 1.2 holds for complete graphs, cycles, bipartite graphs and subcubic graphs. Dong and Wang [6]
showed that Conjecture 1.2 holds for sparse graphs. Li et al. [8] confirmed this conjecture for K4-minor free graphs. By
using the famous Combinatorial Nullstellensatz, Ding et al. [5] proved that χ ′′

Σ (G) ≤ 2∆(G) + col(G) − 1, where col(G) is
the coloring number of G. Later Ding et al. [4] improved this bound to ∆(G) + 2col(G) − 2. In [10], Qu et al. proved that
Conjecture 1.2 holds for planar graphs with maximum degree at least 11. Recently, Wang et al. confirmed the conjecture for
some special planar graphs with maximum degree at least 7, see [14,15].

For a given graph G, let Lz(z ∈ V ∪ E) be any set of list of integer numbers, each of size k. If for any specified collection
of such lists, there exists a neighbor sum distinguishing total coloring of G using colors from Lz for each z ∈ V ∪ E, we call
such coloring a k-neighbor sum distinguishing list total coloring, the smallest k is called the neighbor sum distinguishing total
choosability of G, and denoted by ch′′

Σ (G). In [11], Qu et al. proved that ch′′
Σ (G) ≤ ∆(G)+ 3 for planar graphs with maximum

degree at least 13. In this paper, we studied the neighbor sum distinguishing total choosability of planar graphs and proved
the following result.

Theorem 1.1. Let G be a planar graph without 4-cycles and ∆(G) ≥ 7. Then ch′′
Σ (G) ≤ ∆(G) + 3.

Clearly, χ ′′
Σ (G) ≤ ch′′

Σ (G), so the result above holds also for χ ′′
Σ (G). Our approach is based on the Combinatorial

Nullstellensatz, discharging method and some other tricks, which have been widely used in coloring theory.

2. Preliminaries

Let G be a plane graph without 4-cycles, then the following configurations are excluded from G. This obvious fact will be
frequently used.

(C1) A four face;
(C2) A triangle adjacent to a triangle.
In order to prove the main result, we need some lemmas.

Lemma 2.1 ([11]). Suppose m, n are positive integers with m ≤ n, Li is a set of at least n integers for each i ∈ {1, . . . ,m}, and
let Tm(L1, . . . , Lm) = {

m
i=1 xi|xi ∈ Li, i ≠ j H⇒ xi ≠ xj}. Then |Tm(L1, . . . , Lm)| ≥ mn − m2

+ 1.

Lemma 2.2 ([1]). Let F be an arbitrary field, and let P = P(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree
deg(P) of P equals

n
i=1 ki, where each ki is a non-negative integer, and suppose the coefficient of

n
i=1 xi

ki in P is non-zero.
Then if S1, . . . , Sn are subsets of F with |Si| > ki, there are s1 ∈ S1, . . . , sn ∈ Sn so that P(s1, . . . , sn) ≠ 0.

3. Proof of main result

Let Lz (for all z ∈ V ∪ E) be any given set of lists of integer numbers, each of size k, where k = ∆(G) + 3. For simplicity,
we use ‘‘k-nsd list total coloring’’ to denote ‘‘k-neighbor sum distinguishing list total coloring’’. Let φ be a k-nsd list total
coloring of planar graph Gwithout 4-cycles with ∆(G) ≥ 7. Assume that u ∈ V (G) with d(u) ≤ 3, it is easy to see that u has
at most 3 adjacent vertices and 3 incident edges, and the sum obtained at u must be distinct from 3 sums at the adjacent
vertices of u. So u has at most 9 forbidden colors. Since |Lu| = k ≥ 10, we may first erase the color of u and recolor it finally.
In other words, we will omit the recoloring for all 3−-vertices in the following discussion.

Our proof proceeds by reduction and absurdum. Assume that G is a counterexample to Theorem 1.1 such that |V (G)| +

|E(G)| is as small as possible. Obviously, G is connected. We have the following claims.

Claim 1. In graph G, each 4−-vertex is not adjacent to any 3−-vertex.

Proof. Suppose to the contrary that G contains a vertex u of degree d(u) ≤ 4 which is adjacent to a 3−-vertex v. Assume
that N(u) = {v} ∪ {ui|i ≤ 3} and N(v) = {u} ∪ {vj|j ≤ 2}. Let G′

= G − uv. By the minimality of G, there is a k-nsd list total
coloring φ of G′. We shall now extend the coloring φ to G. Since d(v) ≤ 3, we can erase the color of v and recolor it finally. To
guarantee the coloring is proper, we cannot use the colors of edges uui(i ≤ 3), vvj(j ≤ 2) and vertex u for edge uv, and the
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