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1. Introduction

In this paper, all graphs are finite, undirected, and without loops and multiple edges. The vertex set and edge set of a
graph G are denoted by V(G) and E(G), respectively. The distance d¢(u, v) between vertices u, v € V(G) is the number of
edges on a shortest path connecting vertices u and v in G. The distance of a vertex v € V(G), dg(v), is the sum of all distances
between v and all other vertices of G, i.e.,

do(v) = Y dg(u, v).

ueV(G)

The Wiener number, which was introduced to define the boiling point of alkane by Harold Wiener [9], is one of the most
important topological indices of chemical graphs. It is denoted by W (G) and defined as the sum of distances between all
pairs of vertices in G:

WG = Y deu v)=% > dew).

u,veVv(G) veV(G)

Wiener number has been widely applied in communications, equipment orientation and cryptography, and so on
(cf.Refs.[9,6,5,8,4,7,1,2], and the references therein). Since it deals with distance properties of graphs, computing the Wiener
number of a graph is itself an interesting mathematical problem. The research dealing with Wiener number has attracted
both chemists and mathematicians, and is still active [6,5,8,4,7,1].

In this paper, we consider interchange graphs. Let m > 2 and n > 2 be two positive integers, and letR = (rq, ..., Iy) and
S = (s, ..., Sy) betwo nonnegative integral vectors with Zf;l = Z};l s;. Denote by U(R, S), the set of all (0, 1)-matrices
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A = (i) mxn With row sum vector R and column sun vector S, i.e.,

;=0 or 1(i=1,....m;j=1,...,n)

n
day=r (i=1,....m
=

m
Zaij=sj G=1,...,n).
i=1

Let A € U(R, S). An interchange of A is a transformation which replaces the 2 x 2 submatrix (g) ?)of A with the 2 x 2

submatrix ((1) é) or vice versa. Clearly, an interchange does not alter the row sum vector and the column sum vector of A,

and thus replaces a matrix in U(R, S) with another matrix in U(R, S).

Let G(R, S) denote the undirected simple graph, whose vertex set V(G(R, S)) = U(R, S), and where two matrices are
joined by an edge if and only if one of them can be obtained from the other by a single interchange [1]. Interchange graphs
have provided an interesting research topic. In [1], Brualdi proposed many open problems about interchange graphs. For
the work along this line, the readers are referred to [2,10,11,3] and the references therein.

In the following, we confine ourselves to a class of interchange graphs G(R*, S*), where R* = (r;,r;) and S* =
(1,1,...,1),i.e, m = 2 and n = r; +r,. The distance properties of G(R*, S*) are investigated. An explicit algebraic formula
for the Wiener number of G(R*, S*) is given. Moreover, it is proved that for any two vertices of G(R*, S*) with distance k,
there are k? internally disjoint paths connecting them.

2. The Wiener number of G(R*, $*)

Let A € V(G(R*, S*)). Note that R* = (ry,r2) and S* = (1, ..., 1). Then ay; = 1 (or a;; = 0) implies ay; = 0 (or az; = 1),
j=1,2,...,n,wheren = ry + r,. This means that A is uniquely determined by its first row (or second row). Clearly, the
first row of A is a vector of dimension n consisting of r; ones and n — ry zeros. In the following, let H(r, n) denote the set of
all n dimension vectors of ones and zeros, where r(> 1) denotes the number of ones in each n dimension vector of H(r, n).
Thus, the number of zeros in each n dimension vector of H(r, n) is n — r. Suppose Ae H(r, n). An interchange of Ais a
transformation which replaces the subvector (1, 0) of A with (0, 1) or vice versa. Let G(r, n) denote the simple undirected
graph whose vertex set V(G(r, n)) is just H(r, n), and where two n dimension vectors are adjacent if and only if one of them
can be obtained from the other by a single interchange. Comparing the definitions of G(R*, S*) and G(r, n), we have the
following lemmas.

Lemma 2.1. G(R*, S*) is isomorphic to G(r, n) : G(R*, S*) = G(r, n), whereR* = (r,n—r),S* = (1, ..., 1).

Lemma 2.2. G(r,n) =G(n —r,n).
By the above two lemmas, we need only to investigate the property of G(r, n) with r < n/2.Recall that a graph G is said
to be k-regular if the degree of each vertex of G is k. The following lemma is straight forward.
Lemma 2.3. G(r, n) is r(n — r)-regular. Moreover,
n
r

|V<G(r,n)>|=(':), IE(G(r, n))|=%r<n—r>( ).

Lemma 2.4. G(r,n) (r < ) is a complete graph if and only if r = 1.

Proof. If r = 1, it is easy to check that G(1, n) is a complete graph. If2 < r < Z, there are two different vertices v; and v; in

G(r,n): >
v = (1 100 --- - )
=0 0 1 1 - ).
Evidently, v; cannot be obtained from v; by exactly one interchange. This means that v; and v; are not adjacent in G(r, n).

Hence,if2 <r < % G(r, n) is not a complete graph. Therefore, G(r, n) (r < g) isacomplete graphifand only ifr = 1. O

Lemma 2.5. G(r,n) (r < %) is bipartite if and only if n = 2.

Proof. When n = 2, it is easy to see that r = 1 and G(1, 2) = K; is bipartite. Now suppose n > 3. Then there are three
vertices in G(r, n):
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