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a b s t r a c t

Maximum flow problems occur in a wide range of applications. Although already well
studied, they are still an area of active research. The fastest available implementations
for determining maximum flows in graphs are either based on augmenting path or on
push–relabel algorithms. In this work, we present two ingredients that, appropriately
used, can considerably speed up these methods. On the theoretical side, we present
flow-conserving conditions under which subgraphs can be contracted to a single vertex.
These rules are in the same spirit as presented by Padberg and Rinaldi (1990) [12] for
the minimum cut problem in graphs. These rules allow the reduction of known worst-
case instances for different maximum flow algorithms to equivalent trivial instances. On
the practical side, we propose a two-step max-flow algorithm for solving the problem
on instances coming from physics and computer vision. In the two-step algorithm, flow
is first sent along augmenting paths of restricted lengths only. Starting from this flow,
the problem is then solved to optimality using some known max-flow methods. By
extensive experiments on instances coming from applications in theoretical physics and
computer vision, we show that a suitable combination of the proposed techniques speeds
up traditionally used methods.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Determining maximum flows in networks is a classical problem in the area of combinatorial optimization, with
many applications abound in different fields. Elegant algorithms and fast implementations are available. They allow the
determination of a solution in a time growing only polynomially in the size of the input in theworst case, and large instances
can be solved in practice.

We formulate themaximum s–t flow problem in the following.We are given a network, that is a (directed or undirected)
graph G = (V , E). For an edge e ∈ E capacities ce ≥ 0 are present. Further, we are given two vertices, called the source s
and the sink t . Let f : E → R be a flow function on the set of edges, and denote by fe the amount of flow on edge e. In the
following, we say flow andmean the corresponding flow function.We also do not distinguish between undirected edges and
directed arcs, if not necessary. The value of a flow is the net amount of flow out of the source. The objective is to determine
a maximum flow, that is a flow with maximum value

∑
e∈δ+(s) fe =

∑
e∈δ−(t) fe, with δ(v) = δ+(v) ∪ δ−(v) = {e ∈ E | e =

(v, w)} ∪ {e ∈ E | e = (w, v)}. The flow has to respect the following constraints:
(capacity constraints) 0 ≤ fe ≤ ce, ∀e ∈ E (1)

(flow conservation)
−

w∈δ−(v)

f(w,v) =

−
w∈δ+(v)

f(v,w), ∀v ∈ V \ {s, t}. (2)
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Fig. 1. Simple (directed) example such that augmenting path strategies perform many unnecessary augmentations in the worst case. Capacities are set
to a very large value (indicated by M), except for the arc connecting v and w. In the worst case, one repeatedly augments flow along the residual path
s, v, w, t , then along s, w, v, t , and so on. Thus, one needs 2M augmentations, while only two augmentations are needed if augmented along the paths
s, v, t and s, w, t .

Fig. 2. Minimum counterexample from [16] for the non-termination of augmenting path strategies if using real-valued capacities

r =

√
5−1
2


. At least

one augmenting path always exists that uses the (residual) edge (v, w).

The set of capacity constraints (1) ensures that any feasible flow respects the capacities. The flow conservation constraints
(2) avoid flow generation or elimination other than at the source and the sink. In other words, every unit of flow that enters
a vertex must leave it and vice versa. A flow is feasible if and only if the above constraints are satisfied. A flow function
violating the flow conservation constraints (2) is called preflow. For a vertex v that violates the flow conservation constraint
the difference of incoming flow and outgoing flow is called its excess.

The first algorithm for determining maximum s–t flows has been presented in 1956 in a seminal work by Ford and
Fulkerson [5]. Flow is iteratively improved by increasing it along augmenting paths between the source and the sink. Given
a feasible flow, an augmenting path is a path between source and sink such that additional flow can be sent to the sink. In
other words, the residual capacities of all edges on the path must be strictly positive. Most maximum s–t flow algorithms
rely on the concept of an auxiliary directed graph, the so-called residual graph R = (V , A). The idea is the following. Suppose
we have sent fe units flow along edge e. Thus, we can additionally send ce − fe units flow along edge e. On the other hand, we
can also cancel fe units of flow on edge e. Hence, for a given flow f the residual graph consists of the same vertex set. Each
original edge e = (v, w) is replaced by two arcs a1 = (v, w) and a2 = (w, v). The arc a1 has residual capacity ce − fe while
arc a2 has residual capacity fe. One restricts the residual arcs to those with positive residual capacities. Therefore we have
to be more specific about augmenting path strategies. Flow is sent along augmenting paths in the residual graph R until no
such path exists. For rational capacity choices this basic augmenting path algorithm terminates. However, its running time
is pseudo-polynomial. Choosing ‘bad’ augmenting paths yields unnecessary augmentations, see Fig. 1.

If capacities are real-valued there is no termination guarantee. In fact, Zwick [16] proposed a minimum counterexample
on which augmenting path algorithms do not terminate, see Fig. 2.

Recently, Boykov and Kolmogorov [2] presented a fast implementation for determining maximum s–t flows based on
augmenting paths in a more elaborate way. Two search trees are used simultaneously to determine augmenting paths. One
search tree starts at the source while the other is a backward tree starting at the sink. The trees are updated dynamically in
each search step. This ‘double tree strategy’ yields the currently fastest implementation for instances coming from computer
vision.

Dinic [3] proposed a so-called ‘blocking flow’ algorithm that can be interpreted as a clever augmenting path strategy
avoiding unnecessary augmentations. Applied to the worst case from Fig. 1 only two augmentations are made. This idea
was independently proposed by Edmonds and Karp [4]. We note that these algorithms have strongly polynomial running
time. Finally, themethodwith the best practical performance on general instances is the push–relabel algorithmbyGoldberg
and Tarjan [8]. We describe the general idea in the ‘highest label push–relabel’ form. The algorithmmaintains vertex labels
that correspond to the distance of a vertex to the sink in the residual graph. Initially, all vertices are labeled by a BFS starting
at the sink. Next, the algorithm pushes all possible flow from the source to its adjacent vertices, which results in a preflow.
While the preflow is not a flow, a vertex v with highest label is chosen among all vertices having positive excess. If possible,
the excess at v is pushed along its incident edges toward the sink. If there is then still some excess left at v, the distance
label of v is updated accordingly. The push–relabel algorithm proposed by Goldberg and Tarjan [8] has strongly polynomial
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