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a b s t r a c t

When a weighted graph is an instance of the Distance Geometry Problem (DGP), certain
types of vertex orders (called discretization orders) allow the use of a very efficient, precise
and robust discrete search algorithm (called Branch-and-Prune). Accordingly, finding such
orders is critically important in order to solve DGPs in practice. We discuss three types of
discretization orders, the complexity of determining their existence in a given graph, and
the inclusion relations between the three order existence problems. We also give three
mathematical programming formulations of some of these ordering problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Distance Geometry Problem (DGP) is as follows: given a positive integer K and a simple, undirected, nonnegatively
weighted graph G = (V , E, d), where d : E → R+, find a realization x : V → RK such that:

∀{u, v} ∈ E ∥xu − xv∥2 = duv. (1)

If G is disconnected then realizing G is the same as realizing its connected components, so we assume G is connected.
Solutionmethods for the DGP generally involve a search in continuous space [15]. On the other hand, several applications

of the DGP supply some guarantees on the sparsity structure of the input graph, which may in turn imply graph rigidity.
The solution set is then a finite subset of a Euclidean space, which allows for remarkable performance improvements of the
solution algorithms.Manymethods are iterative in nature: they assume a small subset of vertices have known positions, and
try and infer the position of the rest of the vertices in some order. Thus, vertex orders play an important role. Trilateration
orders, for example, guarantee that every vertex beyond the first K + 1 is adjacent to at least K + 1 predecessors [4]. This
makes it possible to uniquely triangulate the position of each next vertex. This implies a polynomial time algorithm and a
unique solution modulo translations and rotations.

The main focus of this paper is to determine the worst-case complexity class of many vertex ordering problems used in
algorithms for solving the DGP on certain rigid graphs. We also propose and test three Mixed-Integer Linear Programming
(MILP) formulations for solving such vertex ordering problems, and empirically determine that they can only be useful for
rather small-scale instances.
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1.1. Vertex orders in protein conformation

The function of proteins is strongly related to their chemical composition and their three-dimensional structure: proteins
usually fold in space until they reach a stable configuration having low potential energy. Finding their 3D structure is
therefore an important task in pharmaceutical research. Many approaches exist [26]: in this paper we adopt the point of
view of distance geometry [1,2,23].

We represent a protein bymeans of a graphwhere vertices represent atoms and edges are present if the distance between
two adjacent atoms is known. Atomic distances may be known for chemical or physical reasons, or because they were
estimated usingNuclearMagnetic Resonance [27]. Proteins consists of chains of amino acids,which come in twenty different
types. Amino acids consist of a common structure: a small chain startingwith the amino groupH3N, followed by theα carbon
Cα (linked to a hydrogen atom and to a side chain), followed by the carboxyl group COO−. Amino acids only differ because of
their side chains. The whole protein can then be seen as a backbone consisting of a chain formed by the repeated common
structures of each amino acid, and many dangling side chains. To a large extent, the problem of finding a 3D realization of
the protein can be decomposed into the subproblems of realizing the backbone and, separately, the side-chains; and then
combining the partial realizations in a consistent way [25].

Protein backbones enforce an order on the atoms in the backbone. This order has some interesting properties: we know
the distance of each atom v to its predecessor v − 1, since covalent bond lengths are known for chemical reasons. Since
covalent bond angles are also known, for every triangle of three consecutive atoms we know two of its side lengths and the
angle between them: thus we can also compute the length of its third side, i.e. the distance between v and v − 2. Moreover,
NMR can estimate all distances up to a certain threshold (around 5.5 Å). It is known that distances between atom v and v−3
are always below this threshold, so the distance between v and v − 3 is also known. This order makes the protein graph
look like a chain of embedded cliques of size 4 (realized as 3-simplices), each sharing a face with the preceding one, plus
possibly other edges called pruning edges. Pruning edges are due to the fact that when a protein backbone folds in space,
two atoms might come to be physically close even though they are be very distant in terms of their ranks in the backbone
order. In particular, their Euclidean distance becomes known when it is below the NMR threshold. Orders were each vertex
is adjacent to three predecessors have been shown to yield rigid structures in early 1900s [7].

1.2. The Branch-and-Prune algorithm

This order was instrumental in devising a discrete method called Branch-and-Prune (BP) for finding the 3D realization
of protein backbones [14]. Although the BP was not the first discrete method for this problem [3], it was the first which
could find all incongruent solutions to any given problem instance. Most methods previously proposed in the literature, by
contrast, were searches in continuous space (see [17] and references therein).

The principle behind the BP is that any 3D simplex on the vertices {v, v −1, . . . , v −3} (for some vertex v) generally has
two distinct realizations modulo translations and rotations: supposing that the 3D position of vertices v − 1, v − 2, v − 3 is
known, vertex v can be reflected across the unique plane containing the points v −1, v −2, v −3. So if we suppose that the
first three atoms have known positions, we can recursively place the remaining atoms by exploring each of the two possible
positions at each step (branching step). Those positions which are inconsistent with the distances assigned to the pruning
edges are pruned out (pruning step). This yields a method which is exponential in the worst case: if there are no pruning
edges, BP yields a binary tree with 2n−3 leaf nodes, where n is the number of atoms in the protein. It was recently shown
in [16] that this order makes the BP a Fixed-Parameter Tractable (FPT) algorithm.

1.3. Discretization of distance geometry problems

We generalize the backbone order to define an order for K -dimensional spaces: each vertex is adjacent to at least K
predecessors [15] (where, specifically for proteins in 3D space, K = 3). This number of adjacent predecessors (K ) is critical:
any fewer, and the solution set might be uncountable in general, since the graph may no longer be rigid [6]; any more, and
the corresponding DGP subclass can be solved in polynomial time via trilateration [4].

As discussed above, in protein graphs the adjacent predecessors of any vertex v immediately precede v. This is an im-
portant feature: if v has K adjacent vertices that immediately precede v in the order, they are called contiguous predecessors
of v (those which follow v are called contiguous successors). [15]. In summary:
1. the first K vertices in the order form a clique;
2. each vertex with rank greater than K is adjacent to at least K predecessors, exactly K of which are contiguous.
We call the class of DGP instances possessing these orders (and satisfying the strict triangular inequalities on the edge
weights [15]) the Discretizable Molecular Distance Geometry Problem in RK (KDMDGP), and the orders themselves
KDMDGP orders. In [11], the BP algorithm was extended to the KDMDGP. In [22], it was shown that the BP algorithm could
also be used for a larger class of instances, theDiscretizable Distance Geometry Problem (DDGP): the DDGP is the subclass
of DGP instances for which an order exists (called DDGP order) such that Requirement 1 above holds, and a relaxation of Re-
quirement 2 holds, where the K adjacent predecessors need not be contiguous. Both the DDGP and the KDMDGP areNP-hard
problems [22,11]. It was shown in [22] that KDMDGP ( DDGP (problem P is included in problem Q if the two problems have
the same input, and YES (resp. NO) instances of P are also YES (resp. NO) in Q ).
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