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a b s t r a c t

This paper presents a geometrical approach to the Fisher distance, which is a measure of
dissimilarity between two probability distribution functions. The Fisher distance, as well
as other divergence measures, is also used in many applications to establish a proper
data average. The main purpose is to widen the range of possible interpretations and
relations of the Fisher distance and its associated geometry for the prospective applications.
It focuses on statistical models of the normal probability distribution functions and takes
advantage of the connection with the classical hyperbolic geometry to derive closed forms
for the Fisher distance in several cases. Connections with the well-known Kullback–Leibler
divergence measure are also devised.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Information geometry is a research field that has provided framework and enlarged the perspective of analysis for a wide
variety of domains, such as statistical inference, information theory, mathematical programming, neurocomputing, to name
a few. It is an outcome of the investigation of the differential geometric structure on manifolds of probability distributions,
with the Riemannian metric defined by the Fisher information matrix [1]. R. A. Fisher introduced the theory of statistical
inference and his concept of information appears in his remarkable article [14] (see also [30]). Rao’s pioneering work [25]
was subsequently followed by several authors (e.g. [3,20,29], among others). We quote [1] as a general reference for this
matter.

Concerning specifically to information theory and signal processing, an important aspect of the Fisher matrix arises from
its trace being related to the surface area of the typical set associated with a given probability distribution, whereas the
volume of this set is related to the entropy. This was used to establish connections between inequalities in information
theory and geometric inequalities [9,12].

The Fisher–Raometric and the Kullback–Leibler divergencemay be used tomodel experimental data in signal processing.
As the underlying Fisher–Rao geometry of Gaussians is hyperbolic without a closed-form equation for the centroids, in
[21, Chap. 16] the authors have adopted the hyperbolic model centroid approximation, showing its usage in a single-step
clustering method. Another recent reference in image processing that also rests upon the hyperbolic geometric structure
of the Gaussians is [2], where morphological operators were formulated for an image model where at each pixel is given a
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univariate Gaussian distribution, properties of order invariance are explored and an application tomorphological processing
of univariate Gaussian distribution-valued images is illustrated.

Current applications of information geometry in statistics include the problem of dimensionality reduction through
information geometricmethods on statisticalmanifolds [7] aswell as the preparation of samplers for sequentialMonte Carlo
techniques [28]. In the former, the fact that amanifold of probability density function is often intrinsically lower dimensional
than the domain of the data realization provides the background for establishing twomethods of dimensionality reduction;
the proposed tools are illustrated for case studies on actual patient data sets in the clinical flow cytometric analysis. In
the latter, the developed sampler with an information geometric kernel design has attained a higher level of statistical
robustness in the inferred parameters of the analyzed dynamical systems than the standard adaptive random walk kernel.

In general, many applications demand a measure of dissimilarity between the probability distributions of the involved
objects, or also require the replacement of a set of data by a proper average or a centroid [15]. In these cases, the Fisher
distance in the model of the considered probability distributions may apply as well as other dissimilarity measures such
as the Kullback–Leibler, Bregman and Burbea–Rao measures [19,22–24,26,27]. In the context of distance geometry, similar
approaches may be useful in dealing with the Interval Distance Geometry Problem, cf. Sections 3.4 and 3.5 of [18], where
probability distributions can be associatedwith the interval distances provided by practical problems, such as the calculation
of protein structures using Nuclear Magnetic Resonance (NMR) data [17].

Our contribution in this paper is to present a geometrical view of the Fisher matrix, focusing on the parameters that
describe the univariate and themultivariate normal distributions,with the aimofwiden the range of possible interpretations
for the prospective applications of information geometry in a variety of fields. Our geometrical reading of information
geometry fundamentals, starting at Section 2.1, allows to employ results from the classical hyperbolic geometry and to
derive closed expressions for the Fisher distance in special cases of the multivariate normal distributions. Connections with
other dissimilarity measure are also deduced. To enhance the geometric approach, those results are deduced along the text,
instead of being displayed in a ‘‘proposition–proof’’ format. A preliminary summary of some results presented here has
appeared in [10].

This text is organized as follows: in Section 2 we explore the two dimensional statistical model of the Gaussian (normal)
univariate probability distribution function (PDF). Closed forms for this distance are derived in themost commonparameters
(cf. (12)–(14) and Fig. 6) and a relationship with the Kullback–Leibler measure of divergence is presented (see (16)–(17) and
Fig. 7). Section 3 is devoted to the Fisher information geometry of the multivariate normal PDF’s. For the special cases of the
round Gaussian distributions and normal distributions with diagonal covariance matrices, closed forms for the distances
are derived (cf. (18) and (20), resp.). The Fisher information distance for the general bivariate case is discussed as well
(Section 3.3).

2. Univariate normal distributions: a geometrical view

2.1. The hyperbolic model of the mean × standard deviation half-plane

The geometric model of the mean × standard deviation half-plane associates each point in the half upper plane of R2

with a univariate Gaussian PDF
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Hence, a classic parametric space for this family of PDF’s is

H = {(µ, σ ) ∈ R2
| σ > 0}.

A distance between two points P = (µ1, σ1) and Q = (µ2, σ2) in the half-plane H should reflect the dissimilarity
between the associated PDF’s. We will not distinguish the notation of the point P in the parameter space and its associated
PDF f (x, P).

A comparison between univariate normal distributions is illustrated in Fig. 1. By fixing the means and increasing the
standard deviation, we can see that the dissimilarity between the probabilities attached to the same interval concerning the
PDF’s associated with C and D is smaller than the one between the PDF’s associated with A and B (left). This means that the
distance between points in the upper half-plane (right) representing normal distributions cannot be Euclidean. Moreover,
we can observe that such a metric must vary with the inverse of the standard deviation σ . The points C and D should be
closer to each other than the points A and B, reflecting that the pair of distributions A and B is more dissimilar than the pair
C and D.

A proper distance arises from the Fisher information matrix, which is a measure of the amount of information of the
location parameter [11, ch. 12]. For univariate distributions parametrized by an n-dimensional space, the coefficients of this
matrix, which define a metric, are calculated as the expectation of a product involving partial derivatives of the logarithm
of the PDF’s:

gij(β) =
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