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a b s t r a c t

Tandem duplication is a rearrangement process whereby a segment of DNA is replicated
and proximally inserted. A sequence of these events is termed an evolution. Many different
configurations can arise from such evolutions, generating some interesting combinatorial
properties. Firstly, new DNA connections arising in an evolution can be algebraically rep-
resented with a word producing automaton. The number of words arising from n tandem
duplications can then be recursively derived. Secondly, many distinct evolutions result in
the same sequence of words. With the aid of a bi-colored 2d-tree, a Hasse diagram corre-
sponding to a partially ordered set is constructed, for which the number of linear exten-
sions equates to the number of evolutions generating a given word sequence. Thirdly, we
implement some subtree prune and graft operations on this structure to show that the total
number of possible evolutions arising from n tandem duplications is

n
k=1(4

k
− (2k+ 1)).

The space of structures arising from tandem duplication thus grows at a super-exponential
rate with leading order term O(4

1
2 n

2
).
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1. Introduction

Tandem duplications occur when a region of DNA is duplicated and inserted adjacent to the original segment, such as
portrayed in Fig. 1A.

This biological process has long been known to be implicated in the formation of gene clusters [24,23] andmore recently
has been implicated in the formation of amplicons in cancer [21,25,26,32]. In both cases Darwinian selection may be acting
to increase the number of copies of a target gene. In addition to the biological study of this process, there are a range of
algorithmic andmathematical questions that are also of interest. These include identification and alignments of tandem du-
plications in data [3,2,5,4,20] and the construction of phylogenies describing their evolution [6,9,8]. In [9] this was done in a
quite general context, where duplications and losses across multiple genomes were considered. In [8] tree operations were
introduced that allowed a full exploration of tandem duplication trees; phylogenetic structures that describe tandem dupli-
cation evolution. A survey of algorithmic approaches can be found in [27]. The combinatorial nature of these rearrangement
operations leads to some interesting combinatorics. The number of rooted and unrooted tandem duplication trees that arise
from the tandem duplication of a loci of interest are explored in [13,30]. The space of permutations arising from a tandem
duplication-loss model is characterized in [11,10].
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Fig. 1. A Tandem Duplication Process. (A) Three structures (i)–(iii) arising from two tandem duplications on a reference of five regions; 1, 2, 3, 4, 5.
(B) Eleven possible evolutions with two tandem duplications. The example in A is highlighted by *. Underlined numbers are segments. Bold italicized
numbers n indicate connections between segments formed in the nth tandem duplication.

These methods make a range of assumptions regarding the information that is available and the process that takes place.
In particular, there are two issues that relate to the problem we consider.

Firstly, the genomic sequence information that is analyzed differs. In [9], the signed gene orders of several genomes are
compared and explanatory phylogenetic evolutions derived. In [13,30] a single copy of a loci is analyzed, and all the possible
different evolutions that can take place counted. In the problem we consider, we also start with a single region of known
(reference) sequence, and investigate the number of different possible evolutions that arise. Our approach differs from
[13,30] with regard to the second issue.

This relates to the assumption that breakpoints can be reused. A breakpoint in this context can mean the gap between
two contiguous loci, such as a pair of genes in a gene cluster, which can cover a wide region and be implicated in more than
one duplication event with reasonable probability, or it can mean the precise end points of the duplicated region, which are
less likely to be implicated on more than one occasion (for larger scale tandem duplications at least). Modern sequencing
(paired-end) data can resolve breakpoints to the base pair level and reveal tandem duplications to great precision, such
as with cancer data [21]. In such cases, when a tandem duplication occurs, two breakpoints are implicated in a presumably
random process. The chance that precisely the same nucleotide positions are subsequently implicated in another TD is likely
to be small and assuming unique breakpoint use is reasonable in these circumstances. The questions considered in this work
are restricted to the case of unique breakpoint use. We now outline the main problem we consider.

In Fig. 1A we start with five contiguous segments, labeled 1, 2, 3, 4 and 5. This is the original configuration and is
termed the reference. The four reference positions between the segments represent breakpoint sites that demarcate where
duplicated regions of tandem duplications may start or finish. We then have an initial tandem duplication, copying region
234 and inserting a new copy next to the first, to give sequence 123412345. Herewe have used (not underlined, bold symbol)
1 to indicate our first connection between two segments not seen in the reference; the right side of segment 4 is connected
to the left side of segment 2, as seen in Fig. 1Aii. Note also that the left hand end of the duplicated region 234 implicates
the breakpoint between segments 1 and 2, the right hand end implicates the breakpoint between segments 4 and 5. We
have thus used two of the four breakpoints available. Next we have the second tandem duplication, copying region 42 to
finally give 1234122412345. We now have another connection, labeled 2, between the right side of segment 2 and the left
of segment 4, as seen in Fig. 1Aiii. Note that we now have two copies of the connection labeled 1, which was also duplicated.
The left hand end of the duplicated region represented by subword 412 implicates the reference position between 3 and 4,
the right hand end implicates that between 2 and 3.We have thus implicated all four breakpoints between the five reference
segments exactly once; unique breakpoint use.

In Fig. 1B we see all 11 different ways that two tandem duplications can act on five segments with unique breakpoint
reuse. Note that N tandem duplications will implicate 2N breakpoints and so 2N + 1 segments. We are then primarily
interested in solving the following problem.

Problem 1.1. Count the number of different ways that an initial string of 2N + 1 segments can evolve under N tandem
duplications, using each of the N breakpoints once.

To solve this involves a better understanding of the connections we have labeled. If we ignore all the labels representing
segments, we get simpler sequences to consider. For example, the sequence [12345 → 123412345 → 1234122412345]
becomes the simpler sequence [ϵ → 1 → 121], where ϵ denotes the empty word. Although this representation is simpler,
it is not unique—five of the eleven cases in Fig. 1B contain this sequence of connections. However, we will need to consider
these sequences in more detail to solve Problem 1.1.

We then attack the problem as follows. Firstly, we formalize the representations by segments and connections given
above. We then explore the size of the space of word sequences involving connection symbols. Each such word sequence
will be seen to correspond to many different structures formed by tandem duplications. Thus, thirdly, we consider how
to count the distinct cases that all correspond to a single sequence of words containing connection symbols. This involves
counting linear extensions of a suitable partially ordered set (poset). Fourthly, we combine these two pieces of information
and provide an explicit formula to answer Problem 1.1. Concluding remarks complete the paper.
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