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a b s t r a c t

We consider the problem of separating maximally violated inequalities for the precedence
constrained knapsack problem. Though we consider maximally violated constraints in a
very general way, special emphasis is placed on induced cover inequalities and induced
clique inequalities. Our contributions include a new partial characterization of maximally
violated inequalities, a new safe shrinking technique, and new insights on strengthening
and lifting. This work follows on the work of Boyd (1993), Park and Park (1997), van
de Leensel et al. (1999) and Boland et al. (2011). Computational experiments show that
our new techniques and insights can be used to significantly improve the performance of
cutting plane algorithms for this problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a directed graph G = (V , A), vectors a ∈ ZV
+
, c ∈ ZV , and b ∈ Z+, the precedence-constrained knapsack problem

(PCKP) consists in solving a problem of the form,

max cx
s.t. x ∈ P(G, a, b)

x ∈ {0, 1}V

where

P(G, a, b) =

x ∈ [0, 1]V : ax ≤ b, xi ≤ xj ∀(i, j) ∈ A


.

Aside from being an interesting problem in itself, PCKP is an important substructure of many common, more complex,
integer programming problems. Important examples arise in the context of production scheduling problems, where a
number of jobs must be scheduled for processing subject to limited resources, and where precedence relationships dictate
that in order for some jobs to be processed other jobs must be processed as well. An example of such a problem that has
receivedmuch attention in recent years is the open-pitmine production scheduling problem. In this problem, jobs represent
discretized units of rock that must be extracted, and precedence relationships establish that units must be extracted from
the surface on downwards. Integer programming formulations for open pit mine production scheduling problems having
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PCKP as a substructure appear as early as in the 1960s and 1970s in the works of Johnson [16], Dagdelen and Johnson [13]
and others. Since then, a number of articles have addressed PCKP specifically. These articles can broadly be subdivided in two
groups: Those articles which develop algorithms to solve PCKP as an optimization problem, and those articles that analyze
the polyhedral structure of P(G, a, b) ∩ {0, 1}n.

Practical open pit mining problems are very large, easily having tens or hundreds of millions of variables. As shown by
Johnson and Niemi [17], however, PCKP is stronglyN P -complete. Thus, efforts to solve this problem to provable optimality
gaps have either been based on approximation algorithms [11,21] or on enumerative methods such as branch-and-bound.
An important component of any branch-and-bound solver is the LP relaxation solver.Much progress has beenmade in recent
years solving the LP relaxations of PCKP generalizations with customized algorithms. Important examples include the work
of Chicoisne et al. [8] and Bienstock and Zuckerberg [3]. Heuristics for these problems that use PCKP as a subproblem, or
that use the PCKP linear programming relaxation as a subproblem, are described in Amaya et al. [1], Bley et al. [4], Chicoisne
et al. [8] and Cullenbine et al. [12].

Polyhedral analyses, on the other hand, have focused on developing useful cutting planes. Boyd [7], Park and Park [20] and
van de Leensel et al. [22] describe characterizations, separation algorithms, and strengthening techniques for an important
class of cutting planes known as induced minimal cover inequalities. Boland et al. [5] extend previous results using clique
inequalities. Bley et al. [4] test many of these ideas on open pit mine production scheduling problems. Despite important
work in this problem, cutting plane techniques to date are still limited in terms of the instance sizes that can effectively be
tackled computationally. This is a problem, because, if there is any hope of being able to solve large integer programming
formulations of PCKP generalizations, such as those that appear in the context of open pit mining, cutting planes are likely
to play an important role.

In this article, given a fractional point x∗
∈ P(G, a, b), we are interested in efficiently finding an inequality αx ≤ β

that is valid for all x in P(G, a, b) ∩ {0, 1}n and maximally violated by x∗. In the context of this paper, we will say that a valid
inequalityαx ≤ β ismaximally violated by x∗ if it maximizes (αx−β)

∥α∥1
, where ∥·∥1 represents the one-norm inRn. Specifically,

we are interested in extending the work of Boyd [7], Park and Park [20], van de Leensel et al. [22] and Boland et al. [5] so as
to tackle significantly larger instances of PCKP and its generalizations.

For this we introduce new shrinking techniques that can be used to reduce the separation problem in any given instance
of PCKP to an equivalent separation problem in a smaller instance. This shrinking procedure is safe in the sense that it
guarantees that the most violated cuts in the original problem can be mapped to equally violated cuts in the shrunken
problem, and vice-versa. Moreover, within this shrunken graph, we identify a very small set of nodes in which the support
of maximally violated constraint coefficients must be contained. Finally, we introduce a new way of strengthening general
valid inequalities for PCKP, and remark how the lifting techniques of Park and Park [20], originally proposed for minimal
induced cover inequalities, can be generalized to broader classes of inequalities.

This article is organized as follows. In Section 2we review important results from the literature and introduce the notation
wewill use throughout the paper. In Section 3we characterizemaximally violated inequalities and introduce the concept of
break-points, whichwill be used throughout the paper. In Section 4we show how to shrink the original graph in order to find
maximally violated inequalities in a smaller problem. Moreover, we show that, if this shrinking operations is obtained using
break-points, then we can map maximally violated inequalities obtained for the shrunken problem to maximally violated
inequalities for the original one. In Section 5 we show that it is possible to obtain even further reductions. In Section 6 we
show how to obtain strengthened inequalities by using lifting procedures. Finally, in Section 7, we present computational
results that show the usefulness of the proposed methodologies.

2. Definitions, assumptions, and background material

In this section we establish the assumptions and notation that will be used throughout the article. More important,
we survey some important prior results concerning two classes of valid inequalities for PCKP, the minimal induced cover
inequalities and the clique inequalities. These results, which can be found in previous literature, will be the starting point
for our developments in later sections.

Definition 1. Consider a directed graph G = (V , A) with no directed cycles. We say that C ⊆ V is a closure in G if i ∈ C
implies j ∈ C for all (i, j) ∈ A. That is, if set C is closed under the precedence relationships defined by graph G. Given any set
S ⊆ V , we define the smallest closure containing S in graph G = (V , A) as follows:

cl(G, S) = S ∪ {j ∈ V : there is a path in G from some i ∈ S to j }.

To simplify notation, when graph G is clear from context we will write cl(S) instead of cl(G, S). For i ∈ V , we will write cl (i)
instead of cl ({i}).

Definition 2. Consider a directed graph G = (V , A) with no directed cycles. We say that R ⊆ V is a reverse closure in G if
j ∈ R implies i ∈ R for all (i, j) ∈ A. That is, if set R is closed under the reverse of precedence relationships defined by graph
G. Given any set S ⊆ V , we define the smallest reverse closure containing S in graph G = (V , A) as follows:

rcl(G, S) = S ∪ {i ∈ V : there is a path in G from i to some j ∈ S }.
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