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a b s t r a c t

We investigate the set of cycle lengths occurring in bipartite graphs with large mini-
mum degree. A bipartite graph is weakly bipancyclic if it contains cycles of every even
length between the length of a shortest and a longest cycle. In this paper, it is shown
that if G = (V1, V2, E) is a bipartite graph with minimum degree at least n/3 + 4, where
n = max {|V1|, |V2|}, then G is a weakly bipancyclic graph of girth 4. This improves a
theorem of Tian and Zang (1989), which asserts that if G is a Hamilton bipartite graph on
2n(n ≥ 60) vertices with minimum degree greater than 2n/5 + 2, then G is bipancyclic
(i.e., G contains cycles of every even length between 4 and 2n). By combining the main re-
sult of our paperwith a theorem of Jackson and Li (1994), we obtain that every 2-connected
k-regular bipartite graph on at most 6k− 38 vertices is bipancyclic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the set of cycle lengths occurring in bipartite graphs with large minimum degree. The circumference of a
graph G is the length of a longest cycle, denoted by c(G), and the girth is the length of a shortest cycle. A graph of order n
is Hamiltonian if it has circumference n. A bipartite graph G is weakly bipancyclic if it contains cycles of every even length
between the girth and the circumference. If, in addition, G has girth 4 and circumference |G|, it is said to be bipancyclic.

There are many results on the cycle structure of graphs. Among them are the following two theorems.

Theorem 1.1 (Amar, Flandrin, Fournier and Germa [1]). Let G be a non-bipartite Hamiltonian graph of order n ≥ 102. If δ(G) >
2n/5, then G contains cycles of every length between 3 and n, and the bound is sharp.

Theorem 1.2 (Brandt [4]; Brandt, Faudree and Goddard [5]). Every non-bipartite graph of order n with minimum degree at least
(n+ 2)/3 contains cycles of every length between 4 and the circumference.

In graph theory it is common for results to have a ‘‘bipartite’’ version; such a typical example is Jackson’s theorem [9],
which asserts that every 2-connected k-regular graphwith atmost 3k vertices is Hamiltonian. Häggkvist [7] conjectured that
every 2-connected k-regular bipartite graph Gwith at most 6k vertices is Hamiltonian, which was confirmed by Jackson and
Li [10] when G contains at most 6k−38 vertices. So a natural question to be asked is: what are the counterparts of the above
two minimum degree theorems on bipartite graphs? A bipartite version of Theorem 1.1 has been established.

Theorem 1.3 (Tian and Zang [13]). If G is a Hamiltonian bipartite graph on 2n vertices with minimum degree δ(G) > 2n/5+ 2,
where n ≥ 60, then G is bipancyclic.
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However, Mitchem and Schmeichel [11] made the following conjecture.

Conjecture 1.1 (Mitchem and Schmeichel [11]). If G is a Hamiltonian bipartite graph on 2n vertices with minimum degree
δ(G) > (1+

√
4n− 3)/2, then G is bipancyclic, and the bound is best possible.

Unfortunately, Conjecture 1.1 was proved to be losing [12]. In this paper we establish the following bipartite version of
Theorem 1.1, which improves Theorem 1.3.

Theorem 1.4. Every Hamiltonian bipartite graph on 2n vertices with minimum degree at least n/3+ 4 is bipancyclic.

Observe that if G = (V1, V2, E) is a Hamiltonian bipartite graph on 2n vertices, then c(G) = 2n and |V1| = |V2| = n. The
theorem that we will actually prove, Theorem 1.5 on weakly bipancyclic graphs, is a little stronger than Theorem 1.4.

Theorem 1.5. If G = (V1, V2, E) is a bipartite graph with minimum degree at least n/3+ 4, where n = max {|V1|, |V2|}, then
G is a weakly bipancyclic graph of girth 4.

It is interesting to note that there is no connectivity requirement in Theorem 1.5; nor is there any requirement on the
difference between |V1| and |V2|. By combining Theorem 1.4 with a theorem of Jackson and Li [10], we get the following
result.

Corollary 1.6. Every 2-connected k-regular bipartite graph on at most 6k− 38 vertices is bipancyclic.

Throughout this paper, we use Ck to denote a cycle of length k and set
Hn,≤ = {G : G = (V1, V2, E) is a 2-connected bipartite graph with δ(G) ≥ n/3+ 4, where n = max {|V1|, |V2|}}.

Our proof of Theorem 1.5 is organized as follows, the main part of which is to show that every graph G in Hn,≤ is weakly
bipancyclic, where n ≥ 18.
• In Section 2, we establish some basic lemmas on 2-connected bipartite graphs that will be used in Sections 4–6, one of

which says that every two vertices in a 2-connected bipartite graph are connected by a path of length at least 2d − 2,
where d is the second minimum degree, that is, d = min {d(v) : v ≠ x, where x is a vertex with minimum degree}.
• In Section 3, we define a set C2

2k of graphs of order 2k, where k ≥ 4. Each graph of C2
2k, called a tricycle of order 2k,

contains three nested cycles C2k, C2k−2, and C2k−4 simultaneously. Our proof in this and the next section relies heavily on
this nested cycle structure. We start with a tricycle of order 8 in G ∈ Hn,≤ and enlarge the tricycle we find by 2, 4, or 6
vertices. This process stops once we find a tricycle D of order at least 2(δ(G)− 1), where G− D consists of components
with small diameter and large degree sum. It follows that G contains C2k for 2 ≤ k ≤ ⌈n/3⌉ + 3.
• In Section 4, we use the so-called ‘‘weak connectivity’’, defined before Proposition 4.1, to show the existence of all even

cycles C2k with ⌈n/3⌉ + 4 ≤ k ≤ k∗, where k∗ = min{2⌈n/3⌉, |V1|, |V2|}. Let G = (V1, V2, E) ∈ Hn,≤, where n ≥ 18. It is
shown that G contains C2k for 7 ≤ k ≤ 2⌈n/3⌉ if the weak connectivity of G is at most 6; otherwise, G contains a tricycle
of order between 2k+ 2 and 2k+ 6 for each integer kwith ⌈n/3⌉ ≤ k < k∗.
• In Section 5, we use the tool ‘‘segmentally insertible path’’, defined in Section 2.3, to show that ifG = (V1, V2, E) is a graph

in Hn,≤ with c(G) > 2k∗, where n ≥ 18, then G contains cycles of all even lengths between 2k∗ and the circumference.
For this purpose, we first design an algorithm to produce a set of segmentally insertible paths, and then employ it to
show that if G is a graph inHn,≤ containing a C2k, then it contains either a C2k−2 or a C2k−4 with |E(G−C2k−4)| ≥ 2, where
k ≥ 2⌈k/3⌉ + 2.
• In Section 6, we prove Theorem 1.5 and propose a conjecture on weakly bipancyclic bipartite graphs.

2. Preliminaries

In this section, we establish some basic lemmas on bipartite graphs that will be used in Sections 4–6. Let us introduce
some notions before further discussion.

Given a graph G, we use V (G) and E(G) to denote its vertex set and edge set respectively. For v ∈ V (G), we use d(v) and
N(v) to denote its degree and neighborhood respectively. For each subgraph H of G, we set NH(v) = N(v) ∩ V (H) and
dH(v) = |NH(v)|. When G is a bipartite graphwith bipartition (V1, V2), we set Vi(H) := Vi ∩ V (H) for i = 1, 2. For S ⊆ V (G),
let G[S] denote the subgraph of G induced by S and set G− S = G[V (G)− S].

For a path or cycle R, we use ℓ(R) to denote the length of R and assume that R has a given orientation. With this assump-
tion, v+R and v−R will stand for the successor and predecessor of a vertex v on R under this orientation, respectively; we shall
drop the subscript R if there is no danger of confusion. We define v+i recursively by v+0 = v and v+(i+1)

= (v+i)+ for i ≥ 0,
and define v−i analogously. For any two vertices u and v on R, let u

−→
R v or R[u, v] denote the path from u to v on R in the given

direction. The same path with the opposite direction will be denoted by v
←−
R u. Set R[u, v) := R[u, v] − {v}, and R(u, v] :=

R[u, v] − {u}, etc. For each X ⊆ V (R) and i ≥ 1, define X+i := {x+i : x ∈ X} and X−i := {x−i : x ∈ X}. If X = NR(v) for some
vertex v, then we shall simply write N+iR (v) and N−iR (v) as opposed to the more cumbersome (NR(v))+i and (NR(v))−i. We
also define X+0 := X =: X−0 for convenience.

A block of G is a maximal connected subgraph of G that contains no cut vertex. Let G be a graph and B a block of G. We say
that a vertex v of B is an internal vertex of B if v is not a cut vertex of G, and that B is an end block of G if B contains at most
one cut vertex of G.
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