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length between the length of a shortest and a longest cycle. In this paper, it is shown
that if G = (V4, V5, E) is a bipartite graph with minimum degree at least n/3 + 4, where
n = max {|Vq], |V2|}, then G is a weakly bipancyclic graph of girth 4. This improves a
theorem of Tian and Zang (1989), which asserts that if G is a Hamilton bipartite graph on

gfg :;girtis;c,raph 2n(n > 60) vertices with minimum degree greater than 2n/5 + 2, then G is bipancyclic
Hamiltonian cycle (i.e., G contains cycles of every even length between 4 and 2n). By combining the main re-
Weakly bipancyclic sult of our paper with a theorem of Jackson and Li (1994), we obtain that every 2-connected
Minimum degree k-regular bipartite graph on at most 6k — 38 vertices is bipancyclic.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the set of cycle lengths occurring in bipartite graphs with large minimum degree. The circumference of a
graph G is the length of a longest cycle, denoted by c(G), and the girth is the length of a shortest cycle. A graph of order n
is Hamiltonian if it has circumference n. A bipartite graph G is weakly bipancyclic if it contains cycles of every even length
between the girth and the circumference. If, in addition, G has girth 4 and circumference |G|, it is said to be bipancyclic.

There are many results on the cycle structure of graphs. Among them are the following two theorems.

Theorem 1.1 (Amar, Flandrin, Fournier and Germa [1]). Let G be a non-bipartite Hamiltonian graph of order n > 102. If §(G) >
2n/5, then G contains cycles of every length between 3 and n, and the bound is sharp.

Theorem 1.2 (Brandt [4]; Brandt, Faudree and Goddard [5]). Every non-bipartite graph of order n with minimum degree at least
(n + 2)/3 contains cycles of every length between 4 and the circumference.

In graph theory it is common for results to have a “bipartite” version; such a typical example is Jackson’s theorem [9],
which asserts that every 2-connected k-regular graph with at most 3k vertices is Hamiltonian. Hiaggkvist 7] conjectured that
every 2-connected k-regular bipartite graph G with at most 6k vertices is Hamiltonian, which was confirmed by Jackson and
Li [10] when G contains at most 6k — 38 vertices. So a natural question to be asked is: what are the counterparts of the above
two minimum degree theorems on bipartite graphs? A bipartite version of Theorem 1.1 has been established.

Theorem 1.3 (Tian and Zang [13]). If G is a Hamiltonian bipartite graph on 2n vertices with minimum degree §(G) > 2n/5 + 2,
where n > 60, then G is bipancyclic.
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However, Mitchem and Schmeichel [ 11] made the following conjecture.

Conjecture 1.1 (Mitchem and Schmeichel [11]). If G is a Hamiltonian bipartite graph on 2n vertices with minimum degree
8(G) > (14 +/4n — 3)/2, then G is bipancyclic, and the bound is best possible.

Unfortunately, Conjecture 1.1 was proved to be losing [12]. In this paper we establish the following bipartite version of
Theorem 1.1, which improves Theorem 1.3.

Theorem 1.4. Every Hamiltonian bipartite graph on 2n vertices with minimum degree at least n/3 + 4 is bipancyclic.

Observe that if G = (V1, V,, E) is a Hamiltonian bipartite graph on 2n vertices, then c(G) = 2n and |V;| = |V,| = n. The
theorem that we will actually prove, Theorem 1.5 on weakly bipancyclic graphs, is a little stronger than Theorem 1.4.

Theorem 1.5. If G = (V1, V5, E) is a bipartite graph with minimum degree at least n/3 4 4, where n = max {|V;], |V,|}, then
G is a weakly bipancyclic graph of girth 4.

It is interesting to note that there is no connectivity requirement in Theorem 1.5; nor is there any requirement on the
difference between |V;| and |V;|. By combining Theorem 1.4 with a theorem of Jackson and Li [10], we get the following
result.

Corollary 1.6. Every 2-connected k-regular bipartite graph on at most 6k — 38 vertices is bipancyclic.
Throughout this paper, we use C; to denote a cycle of length k and set
Hn.< ={G: G= (Vq, Vs, E) is a 2-connected bipartite graph with §(G) > n/3 + 4, where n = max {|V1], |V2|}}.

Our proof of Theorem 1.5 is organized as follows, the main part of which is to show that every graph G in #, < is weakly
bipancyclic, where n > 18.

e In Section 2, we establish some basic lemmas on 2-connected bipartite graphs that will be used in Sections 4-6, one of
which says that every two vertices in a 2-connected bipartite graph are connected by a path of length at least 2d — 2,
where d is the second minimum degree, that is, d = min {d(v) : v # X, where x is a vertex with minimum degree}.

e In Section 3, we define a set ('322,< of graphs of order 2k, where k > 4. Each graph of ('3%,(, called a tricycle of order 2k,
contains three nested cycles Cy, Cor_2, and Cyi_4 simultaneously. Our proof in this and the next section relies heavily on
this nested cycle structure. We start with a tricycle of order 8 in G € #, < and enlarge the tricycle we find by 2, 4, or 6
vertices. This process stops once we find a tricycle D of order at least 2(§(G) — 1), where G — D consists of components
with small diameter and large degree sum. It follows that G contains Gy for2 < k < [n/37 + 3.

e In Section 4, we use the so-called “weak connectivity”, defined before Proposition 4.1, to show the existence of all even
cycles Gy, with [n/37 + 4 < k < k*, where k* = min{2[n/3], |V4|, |[V,|}.Let G = (V4, V5, E) € ¢, <, wheren > 18.1tis
shown that G contains Gy for 7 < k < 2[n/3] if the weak connectivity of G is at most 6; otherwise, G contains a tricycle
of order between 2k + 2 and 2k + 6 for each integer k with [n/3] < k < k*.

e InSection 5, we use the tool “segmentally insertible path”, defined in Section 2.3, to show thatif G = (V;, V,, E) isa graph
in #, < with c¢(G) > 2k*, where n > 18, then G contains cycles of all even lengths between 2k* and the circumference.
For this purpose, we first design an algorithm to produce a set of segmentally insertible paths, and then employ it to
show that if Gis a graph in #, < containing a Cy, then it contains either a Cyx_, or a Cax_4 With |E(G — Cyr—4)| > 2, where
k> 2[k/3] + 2.

e In Section 6, we prove Theorem 1.5 and propose a conjecture on weakly bipancyclic bipartite graphs.

2. Preliminaries

In this section, we establish some basic lemmas on bipartite graphs that will be used in Sections 4-6. Let us introduce
some notions before further discussion.

Given a graph G, we use V(G) and E(G) to denote its vertex set and edge set respectively. For v € V(G), we use d(v) and
N(v) to denote its degree and neighborhood respectively. For each subgraph H of G, we set Ny(v) = N(v) N V(H) and
dy(v) = |Ny(v)|. When G is a bipartite graph with bipartition (Vq, V), we set V;(H) := V; N V(H) fori = 1, 2. For S C V(G),
let G[S] denote the subgraph of G induced by S and set G — S = G[V(G) — S].

For a path or cycle R, we use £(R) to denote the length of R and assume that R has a given orientation. With this assump-
tion, v,'{ and v, will stand for the successor and predecessor of a vertex v on R under this orientation, respectively; we shall
drop the subscript R if there is no danger of confusion. We define vt recursively by v*° = v and v**D = (v*)* fori > 0,
and define v~ analogously. For any two vertices u and v on R, let u_R) v or R[u, v] denote the path from u to v on R in the given
direction. The same path with the opposite direction will be denoted by v<R_u. Set R[u, v) := R[u, v] — {v}, and R(u, v] =
R[u, v] — {u}, etc. Foreach X € V(R) and i > 1,define X := {x*': x e X} and X~ := {x~' : x € X}.If X = Ni(v) for some
vertex v, then we shall simply write N,;“(v) and N '(v) as opposed to the more cumbersome (Nr(v))* and (Ng(v))~%. We
also define X := X =: X0 for convenience.

A block of G is a maximal connected subgraph of G that contains no cut vertex. Let G be a graph and B a block of G. We say
that a vertex v of B is an internal vertex of B if v is not a cut vertex of G, and that B is an end block of G if B contains at most
one cut vertex of G.
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