Weakly bipancyclic bipartite graphs

Zhiquan $\mathrm{Hu}^{\mathrm{a}, *}$, Jing Sun ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Faculty of Mathematics and Statistics, Central China Normal University, Wuhan, China
${ }^{\mathrm{b}}$ Faculty of Mathematics and Statistics, Hubei University of Education, Wuhan, China

A R T I C L E I N F O

Article history:

Received 22 August 2014
Received in revised form 2 March 2015
Accepted 2 May 2015
Available online 26 May 2015

Keywords:

Bipartite graph
Hamiltonian cycle
Weakly bipancyclic
Minimum degree

Abstract

We investigate the set of cycle lengths occurring in bipartite graphs with large minimum degree. A bipartite graph is weakly bipancyclic if it contains cycles of every even length between the length of a shortest and a longest cycle. In this paper, it is shown that if $G=\left(V_{1}, V_{2}, E\right)$ is a bipartite graph with minimum degree at least $n / 3+4$, where $n=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}$, then G is a weakly bipancyclic graph of girth 4 . This improves a theorem of Tian and Zang (1989), which asserts that if G is a Hamilton bipartite graph on $2 n(n \geq 60)$ vertices with minimum degree greater than $2 n / 5+2$, then G is bipancyclic (i.e., G contains cycles of every even length between 4 and $2 n$). By combining the main result of our paper with a theorem of Jackson and $\operatorname{Li}(1994)$, we obtain that every 2-connected k-regular bipartite graph on at most $6 k-38$ vertices is bipancyclic.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the set of cycle lengths occurring in bipartite graphs with large minimum degree. The circumference of a graph G is the length of a longest cycle, denoted by $c(G)$, and the girth is the length of a shortest cycle. A graph of order n is Hamiltonian if it has circumference n. A bipartite graph G is weakly bipancyclic if it contains cycles of every even length between the girth and the circumference. If, in addition, G has girth 4 and circumference $|G|$, it is said to be bipancyclic.

There are many results on the cycle structure of graphs. Among them are the following two theorems.
Theorem 1.1 (Amar, Flandrin, Fournier and Germa [1]). Let G be a non-bipartite Hamiltonian graph of order $n \geq 102$. If $\delta(G)>$ $2 n / 5$, then G contains cycles of every length between 3 and n, and the bound is sharp.

Theorem 1.2 (Brandt [4]; Brandt, Faudree and Goddard [5]). Every non-bipartite graph of order n with minimum degree at least $(n+2) / 3$ contains cycles of every length between 4 and the circumference.

In graph theory it is common for results to have a "bipartite" version; such a typical example is Jackson's theorem [9], which asserts that every 2 -connected k-regular graph with at most $3 k$ vertices is Hamiltonian. Häggkvist [7] conjectured that every 2 -connected k-regular bipartite graph G with at most $6 k$ vertices is Hamiltonian, which was confirmed by Jackson and Li [10] when G contains at most $6 k-38$ vertices. So a natural question to be asked is: what are the counterparts of the above two minimum degree theorems on bipartite graphs? A bipartite version of Theorem 1.1 has been established.

Theorem 1.3 (Tian and Zang [13]). If G is a Hamiltonian bipartite graph on $2 n$ vertices with minimum degree $\delta(G)>2 n / 5+2$, where $n \geq 60$, then G is bipancyclic.

[^0]However, Mitchem and Schmeichel [11] made the following conjecture.
Conjecture 1.1 (Mitchem and Schmeichel [11]). If G is a Hamiltonian bipartite graph on $2 n$ vertices with minimum degree $\delta(G)>(1+\sqrt{4 n-3}) / 2$, then G is bipancyclic, and the bound is best possible.

Unfortunately, Conjecture 1.1 was proved to be losing [12]. In this paper we establish the following bipartite version of Theorem 1.1, which improves Theorem 1.3.

Theorem 1.4. Every Hamiltonian bipartite graph on $2 n$ vertices with minimum degree at least $n / 3+4$ is bipancyclic.
Observe that if $G=\left(V_{1}, V_{2}, E\right)$ is a Hamiltonian bipartite graph on $2 n$ vertices, then $c(G)=2 n$ and $\left|V_{1}\right|=\left|V_{2}\right|=n$. The theorem that we will actually prove, Theorem 1.5 on weakly bipancyclic graphs, is a little stronger than Theorem 1.4.

Theorem 1.5. If $G=\left(V_{1}, V_{2}, E\right)$ is a bipartite graph with minimum degree at least $n / 3+4$, where $n=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}$, then G is a weakly bipancyclic graph of girth 4.

It is interesting to note that there is no connectivity requirement in Theorem 1.5; nor is there any requirement on the difference between $\left|V_{1}\right|$ and $\left|V_{2}\right|$. By combining Theorem 1.4 with a theorem of Jackson and Li [10], we get the following result.

Corollary 1.6. Every 2 -connected k-regular bipartite graph on at most $6 k-38$ vertices is bipancyclic.
Throughout this paper, we use C_{k} to denote a cycle of length k and set
$\mathscr{H}_{n, \leq}=\left\{G: G=\left(V_{1}, V_{2}, E\right)\right.$ is a 2-connected bipartite graph with $\delta(G) \geq n / 3+4$, where $\left.n=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}\right\}$.
Our proof of Theorem 1.5 is organized as follows, the main part of which is to show that every graph G in $\mathscr{H}_{n, \leq}$ is weakly bipancyclic, where $n \geq 18$.

- In Section 2, we establish some basic lemmas on 2-connected bipartite graphs that will be used in Sections 4-6, one of which says that every two vertices in a 2 -connected bipartite graph are connected by a path of length at least $2 d-2$, where d is the second minimum degree, that is, $d=\min \{d(v): v \neq x$, where x is a vertex with minimum degree $\}$.
- In Section 3, we define a set $\mathcal{C}_{2 k}^{2}$ of graphs of order $2 k$, where $k \geq 4$. Each graph of $\mathcal{C}_{2 k}^{2}$, called a tricycle of order $2 k$, contains three nested cycles $C_{2 k}, C_{2 k-2}$, and $C_{2 k-4}$ simultaneously. Our proof in this and the next section relies heavily on this nested cycle structure. We start with a tricycle of order 8 in $G \in \mathscr{H}_{n, \leq}$ and enlarge the tricycle we find by 2 , 4 , or 6 vertices. This process stops once we find a tricycle D of order at least $2(\overline{\delta(G)}-1)$, where $G-D$ consists of components with small diameter and large degree sum. It follows that G contains $C_{2 k}$ for $2 \leq k \leq\lceil n / 3\rceil+3$.
- In Section 4, we use the so-called "weak connectivity", defined before Proposition 4.1, to show the existence of all even cycles $C_{2 k}$ with $\lceil n / 3\rceil+4 \leq k \leq k^{*}$, where $k^{*}=\min \left\{2\lceil n / 3\rceil,\left|V_{1}\right|,\left|V_{2}\right|\right\}$. Let $G=\left(V_{1}, V_{2}, E\right) \in \mathscr{H}_{n, \leq}$, where $n \geq 18$. It is shown that G contains $C_{2 k}$ for $7 \leq k \leq 2\lceil n / 3\rceil$ if the weak connectivity of G is at most 6 ; otherwise, G contains a tricycle of order between $2 k+2$ and $2 k+6$ for each integer k with $\lceil n / 3\rceil \leq k<k^{*}$.
- In Section 5 , we use the tool "segmentally insertible path", defined in Section 2.3 , to show that if $G=\left(V_{1}, V_{2}, E\right)$ is a graph in $\mathscr{H}_{n, \leq}$ with $c(G)>2 k^{*}$, where $n \geq 18$, then G contains cycles of all even lengths between $2 k^{*}$ and the circumference. For this purpose, we first design an algorithm to produce a set of segmentally insertible paths, and then employ it to show that if G is a graph in $\mathscr{H}_{n, \leq}$ containing a $C_{2 k}$, then it contains either a $C_{2 k-2}$ or a $C_{2 k-4}$ with $\left|E\left(G-C_{2 k-4}\right)\right| \geq 2$, where $k \geq 2\lceil k / 3\rceil+2$.
- In Section 6, we prove Theorem 1.5 and propose a conjecture on weakly bipancyclic bipartite graphs.

2. Preliminaries

In this section, we establish some basic lemmas on bipartite graphs that will be used in Sections 4-6. Let us introduce some notions before further discussion.

Given a graph G, we use $V(G)$ and $E(G)$ to denote its vertex set and edge set respectively. For $v \in V(G)$, we use $d(v)$ and $N(v)$ to denote its degree and neighborhood respectively. For each subgraph H of G, we set $N_{H}(v)=N(v) \cap V(H)$ and $d_{H}(v)=\left|N_{H}(v)\right|$. When G is a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$, we set $V_{i}(H):=V_{i} \cap V(H)$ for $i=1$, 2 . For $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S and set $G-S=G[V(G)-S]$.

For a path or cycle R, we use $\ell(R)$ to denote the length of R and assume that R has a given orientation. With this assumption, v_{R}^{+}and v_{R}^{-}will stand for the successor and predecessor of a vertex v on R under this orientation, respectively; we shall drop the subscript R if there is no danger of confusion. We define v^{+i} recursively by $v^{+0}=v$ and $v^{+(i+1)}=\left(v^{+i}\right)^{+}$for $i \geq 0$, and define v^{-i} analogously. For any two vertices u and v on R, let $u \vec{R} v$ or $R[u, v]$ denote the path from u to v on R in the given direction. The same path with the opposite direction will be denoted by $v \overleftarrow{R} u$. Set $R[u, v):=R[u, v]-\{v\}$, and $R(u, v]:=$ $R[u, v]-\{u\}$, etc. For each $X \subseteq V(R)$ and $i \geq 1$, define $X^{+i}:=\left\{x^{+i}: x \in X\right\}$ and $X^{-i}:=\left\{x^{-i}: x \in X\right\}$. If $X=N_{R}(v)$ for some vertex v, then we shall simply write $N_{R}^{+i}(v)$ and $N_{R}^{-i}(v)$ as opposed to the more cumbersome $\left(N_{R}(v)\right)^{+i}$ and $\left(N_{R}(v)\right)^{-i}$. We also define $X^{+0}:=X=: X^{-0}$ for convenience.

A block of G is a maximal connected subgraph of G that contains no cut vertex. Let G be a graph and B a block of G. We say that a vertex v of B is an internal vertex of B if v is not a cut vertex of G, and that B is an end block of G if B contains at most one cut vertex of G.

https://daneshyari.com/en/article/418594

Download Persian Version:

https://daneshyari.com/article/418594

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hu_zhiq@aliyun.com (Z. Hu), xytjing@sina.cn (J. Sun).
 http://dx.doi.org/10.1016/j.dam.2015.05.006
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

