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a b s t r a c t

Given an undirected graph, each of the two end-vertices of an edge can ‘‘own’’ the edge.
Call a vertex ‘‘poor’’ if it owns at most one edge. We give a polynomial time algorithm for
the problem of finding an assignment of owners to the edges whichminimizes the number
of poor vertices. In the terminology of graph orientation, this means finding an orientation
for the edges of a graphwhichminimizes the number of verticeswith out-degree atmost 1,
and answers a question of Asahiro et al. (2013).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple1 undirected graph. An orientation of G is a function Λ, which maps each undirected edge {u, v} ∈ E(G)
to one of the two possible directed edges (u, v) or (v, u). We let Λ(G) be the directed graph whose vertex set is V (G) and
whose set of (directed) edges is {Λ({u, v}) | {u, v} ∈ E(G)}. For each u ∈ V (G), the out-degree of u under Λ is denoted by

d+

Λ(u) :=

{u, v} ∈ E(G) | Λ({u, v}) = (u, v)
.

Fix an integer k ≥ 0. A vertex v ∈ V (G) is called Λ-k-light (or just k-light, light) if d+

Λ(v) ≤ k, and if d+

Λ(v) ≥ k it is called
k-heavy. Asahiro et al. [2,1] study the combinatorial optimization problemMin-k-Lightwhich asks for finding an orientation
minimizing the number of k-light vertices. For k = 1, they exhibit classes of graphs on which the problem can be solved in
polynomial time, and they ask the following open question.

Question 1 ([2,1]). Is Min-1-Light NP-hard for general graphs?

In this short note, we answer the above question:

Theorem 2. Min-1-Light on a graph with n vertices and m edges can be solved by single maximum cardinality matching com-
putation in a graph with O(m) vertices and O(m2/n) edges.

Asahiro et al. [2,1]mention a naturalweighted version of the problem: the vertices have costs cv ∈ Q, v ∈ V (G) associated
with them, and the objective is to find an orientation which minimizes the expression


v cv over all orientations Λ, where

the sum extends over all 1-light vertices v. Our result also gives the complexity of the weighted case.

E-mail address: kavehkho@ut.ee.
1 Note that our main reference [1] uses multigraphs, but we can assume w.l.o.g. that graphs are simple.
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Fig. 1. Two ‘‘gadgets’’ Wu andWv in the graph G′ .

Theorem 3. For nonnegative weights, weighted Min-1-Light on a graph with n vertices and m edges can be solved by single
maximum weight matching computation in a graph with O(m) vertices and O(m2/n) edges.

If weights can be negative, as a special case (when allweights are−1), itwas shown that the problemMax-1-Light is NP-hard
by Asahiro et al. [1].

The proofs of the theorems are in Section 2.

Some notation

Wemostly adhere to standard notation. Our (undirected) edges are 2-element subsets of the vertex set. For a vertex v ∈

V (G), we denote by δ(v) := {e ∈ E(G) | v ∈ e} the set of all edges incident on v. The degree of a vertex is denoted by
d(v) := |δ(v)|.

2. The algorithm for Min-1-Light

We first deal with the case that there are no vertices of degree 1. For such a graph G, construct a graph G′ as follows. Start
by letting G′ be a copy of G. Then replace every edge e = {u, v} with a path u, u′

e, xe, v
′
e, v, by adding three new vertices u′

e,
xe, v′

e, and four new edges {u, u′
e}, {u

′
e, xe}, {xe, v

′
e}, {v

′
e, v}. We call the vertices xe connecting vertices, and the edges {u′

e, xe}
(and also {xe, v′

e}) connecting edges, and let Fu := {{u′
e, xe} | e ∈ δ(v)}.

Now, for each original vertex v, do the following: replace v with d(v)−2 newvertices v′′

1 , . . . , v
′′

d(v)−2. Add (d(v)−2)·d(v)

edges between the v′′

i and the v′
e, for every i and every e ∈ δ(v). Finally, choose two edges e, f ∈ δ(v) arbitrarily, and add

an edge gv := {v′
e, v

′

f }, which we call the special edge.
In thisway,G′ contains pairwise disjoint ‘‘gadgets’’ (=̂ induced subgraphs)Wv ,v ∈ V (G), eachwith d(v)−2+d(v) vertices

(includes v′′

1 , . . . , v
′′

d(v)−2 and also v′
e, for every e ∈ δ(v)) and (d(v) − 2) · d(v) + 1 edges. If {u, v} ∈ E(G), then the gadgets

Wu andWv are joined to the connecting vertex x{u,v}. Cf. Fig. 1. With n := |V (G)| andm := |E(G)|, the resulting graph G′ has

m +


v∈V (G)


d(v) − 2 + d(v)


= 5m − 2n vertices, and


v∈V (G)


(d(v) − 2)d(v) + 1 + d(v)


≤

4m2

n
+ n − 2m edges

(by using the Cauchy–Schwarz inequality).
The following fact is crucial in the construction.

Lemma 4. Let M be a maximal matching in G′. For each v ∈ V (G), there exists a matching Nv which satisfies the following
conditions:
1. Nv differs from M only on E(Wv).
2. Nv = M or |Nv ∩ E(Wv)| = |M ∩ E(Wv)| + 1.
3. With k := |M ∩ Fv|, we haveNv ∩


E(Wv) ∪ Fv

 =


d(v) − 1, if 0 ≤ k ≤ 1
d(v), if k ≥ 2. (1)

Proof. LetM be a maximal matching. If k = 0 and the special edge gv is not inM , then, to obtain Nv , we replaceM ∩ E(Wv)
with the edges of a perfect matching of Wv , which consists of gv plus a perfect bipartite matching between the v′′

i and the
v′
e. This increases the number of edges in the matching by 1. If k ≥ 2 and gv ∈ M , then at least two of the vertices v′′

i ,
i = 1, . . . , d(v) − 2 are exposed. To obtain Nv , we delete gv from M and add two edges from the exposed vertices in v′′

i ,
i = 1, . . . , d(v) − 2, to the end-vertices of gv , thus increasing the number of Wv-edges in the matching by 1. In all other
cases, we leaveM unchanged: Nv := M .
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