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a b s t r a c t

In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endver-
tices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an
undirected graph G = (V , E) and two ‘‘object types’’ A and B chosen from the alternatives
above, we consider the following questions. Packing problem: can we find an object of
type A and one of type B in the edge set E of G, so that they are edge-disjoint? Partitioning
problem: canwe partition E into an object of type A and one of type B? Covering problem:
can we cover E with an object of type A, and an object of type B? This framework includes
44 natural graph theoretic questions. Some of these problemswere well-known before, for
example covering the edge-set of a graph with two spanning trees, or finding an s-t path
P and an s′-t ′ path P ′ that are edge-disjoint. However, many others were not, for example
can we find an s-t path P ⊆ E and a spanning tree T ⊆ E that are edge-disjoint? Most of
these previously unknown problems turned out to be NP-complete, many of them even in
planar graphs. This paper determines the status of these 44 problems. For the NP-complete
problems we also investigate the planar version, for the polynomial problems we consider
the matroidal generalization (wherever this makes sense).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider undirected graphs. The node set of a graph G = (V , E) is sometimes also denoted by V (G), and
similarly, the edge set is sometimes denoted by E(G). A subgraph of a graph G = (V , E) is a pair (V ′, E ′) where V ′

⊆ V and
E ′

⊆ E ∩ (V ′
×V ′). A graph is called subcubic if every node is incident to at most 3 edges, and it is called subquartic if every

node is incident to at most 4 edges. By a cut in a graph wemean the set of edges leaving a nonempty proper subset V ′ of the
nodes (note that we do not require that V ′ and V − V ′ induce a connected graph). We use standard terminology and refer
the reader to [9] for what is not defined here.

We consider 3 types of decision problems with 7 types of objects. The three types of problems are: packing, covering
and partitioning, and the seven types of objects are the following: paths (denoted by a P), paths with specified endvertices
(denoted by Pst , where s and t are the prescribed endvertices), (simple) circuits (denoted by C: by that we mean a closed
walk of length at least 2, without edge- and node-repetition), forests (F), spanning trees (SpT), (not necessarily spanning)
trees (T), and cuts (denoted by Cut). Let G = (V , E) be a connected undirected graph (we assume connectedness in order
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Table 1: 25 partitioning problems.

Problem Status Reference Remark

P + P NPC Theorem 5 NPC for subquartic planar
P + Pst NPC Theorem 5 NPC for subquartic planar
P + C NPC Theorem 5 NPC for subquartic planar
P + T NPC Theorem 5 NPC for subquartic planar
P + SpT NPC Theorem 5 NPC for subquartic planar
P + F NPC Theorem 3 (and Theorem 5) NPC for subcubic planar
Pst + Ps′ t ′ NPC Theorem 5 NPC for subquartic planar
Pst + C NPC Theorem 5 NPC for subquartic planar
Pst + T NPC Theorem 5 NPC for subquartic planar
Pst + SpT NPC Theorem 5 NPC for subquartic planar
Pst + F NPC Theorem 3 (and Theorem 5) NPC for subcubic planar
C + C NPC Theorem 5 NPC for subquartic planar
C + T NPC Theorem 5 NPC for subquartic planar
C + SpT NPC Theorem 5 NPC for subquartic planar
C + F NPC Theorem 3 (and Theorem 5) NPC for subcubic planar
T + T NPC Pálvölgyi [19] planar graphs?
T + SpT NPC Theorem 6 planar graphs?
F + F P Kishi and Kajitani [14], Kameda and Toida [12] (Nash-Williams [18]) in P for matroids: Edmonds [7]
SpT+SpT P Kishi and Kajitani [14], Kameda and Toida [12], (Nash-Williams [17], Tutte [24]) in P for matroids: Edmonds [7]
Cut+Cut P if and only if bipartite (and |V | ≥ 3)
Cut + F NPC Theorem 7 planar graphs?
Cut + C NPC Theorem 3 NPC for subcubic planar
Cut + T NPC Theorem 3 NPC for subcubic planar
Cut + P NPC Theorem 3 NPC for subcubic planar
Cut + Pst NPC Theorem 3 NPC for subcubic planar

to avoid trivial case-checkings) and A and B two (not necessarily different) object types from the 7 possibilities above. The
general questions we ask are the following:

• Packing problem (denoted by A ∧ B): can we find two edge-disjoint subgraphs in G, one of type A and the other of
type B?

• Covering problem (denoted by A ∪ B): can we cover the edge set of Gwith an object of type A and an object of type B?
• Partitioning problem (denoted by A + B): can we partition the edge set of G into an object of type A and an object of

type B?

Let us give one example of each type. A typical partitioning problem is the following: decidewhether the edge set ofG can
be partitioned into a spanning tree and a forest. Using our notations this is Problem SpT + F. This problem is in NP ∩ co-NP
by the results of Nash-Williams [18], polynomial algorithms for deciding the problemwere given by Kishi and Kajitani [14],
and Kameda and Toida [12].

A typical packing problem is the following: given four (not necessarily distinct) vertices s, t, s′, t ′ ∈ V , decide whether
there exists an s–t path P and an s′–t ′-path P ′ in G, such that P and P ′ do not share any edge. With our notations this is
Problem Pst ∧ Ps′t ′ . This problem is still solvable in polynomial time, as was shown by Thomassen [23] and Seymour [22].

A typical covering problem is the following: decide whether the edge set of G can be covered by a path and a circuit. In
our notations this is Problem P ∪ C . Interestingly we found that this simple-looking problem is NP-complete.

Let us introduce the following short formulation for the partitioning and covering problems. If the edge set of a graph
G can be partitioned into a type A subgraph and a type B subgraph, then we will also say that the edge set of G is A + B.
Similarly, if there is a solution of Problem A ∪ B for a graph G, then we say that the edge set of G is A ∪ B.

The setting outlined above gives us 84 problems. Note however that some of these can be omitted. For example P ∧ A is
trivial for each possible type A in question, because P may consist of only one vertex. By the same reason, T ∧ A and F ∧ A
type problems are also trivial. Furthermore, observe that the edge-set E(G) of a graph G is F + A ⇔ E(G) is F ∪ A ⇔ E(G)
is T ∪ A ⇔ E(G) is SpT ∪ A: therefore we will only consider the problems of form F + A among these for any A. Similarly,
the edge set E(G) is F + F ⇔ E(G) is T + F ⇔ E(G) is SpT + F: again we choose to deal with F + F. We can also omit the
problems Cut + SpT and Cut ∧ SpT because a cut and a spanning tree can never be disjoint.

The careful calculation gives that we are left with 44 problems. We have investigated the status of these. Interestingly,
many of these problems turn out to be NP-complete. Our results are summarized in Tables 1–3. We note that in our NP-
completeness proofs we always show that the considered problem is NP-complete even if the input graph is simple. On the
other hand, the polynomial algorithms given here always work also for multigraphs (we allow parallel edges, but we forbid
loops). Some of the results shown in the tables were already proved in the preliminary version [5] of this paper: namely we
have already shown the NP-completeness of Problems P + T, P + SpT, Pst + T, Pst + SpT, C + T, C + SpT, T + SpT, Pst ∧ SpT,
and C ∧ SpT there.

Problems Pst +SpT and T+SpT were posed in the open problem portal called ‘‘EGRES Open’’ [8] of the Egerváry Research
Group. Most of the NP-complete problems remain NP-complete for planar graphs, though we do not know yet the status of
Problems T + T, T + SpT, Cut + F, Pst ∧ SpT, and C ∧ SpT for planar graphs, as indicated in the table.
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