The height and width of bargraphs

Aubrey Blecher ${ }^{\text {a }}$, Charlotte Brennan ${ }^{\text {a }}$, Arnold Knopfmacher ${ }^{\text {a,*, }}$ Helmut Prodinger ${ }^{\text {b }}$
${ }^{\text {a }}$ The John Knopfmacher Centre for Applicable Analysis and Number Theory, University of the Witwatersrand, P.O. Wits 2050, South Africa
${ }^{\mathrm{b}}$ Department of Mathematics, University of Stellenbosch, 7602, Stellenbosch, South Africa

ARTICLE INFO

Article history:

Received 20 January 2014
Received in revised form 13 August 2014
Accepted 20 August 2014
Available online 12 September 2014

Keywords:

Bargraphs
Generating functions
Height
Asymptotics

Abstract

A bargraph is a lattice path in \mathbb{N}_{0}^{2} with three allowed steps: the up step $u=(0,1)$, the down step $d=(0,-1)$ and the horizontal step $h=(1,0)$. It starts at the origin with an up step and terminates as soon as it intersects the x-axis again. A down step cannot follow an up step and vice versa. The height of a bargraph is the maximum y coordinate attained by the graph. The width is the horizontal distance from the origin till the end. For bargraphs of fixed semi-perimeter n we find the generating functions for the total height and the total width and hence find asymptotic estimates for the average height and the average width. Our methodology makes use of a bijection between bargraphs and uudd-avoiding Dyck paths.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A bargraph is a lattice path in \mathbb{N}_{0}^{2}, analogous to Dyck or Motzkin paths. There are three allowed steps: the up step $(0,1)$, the down step $(0,-1)$ and the horizontal step $(1,0)$ denoted by u, d and h respectively. The bargraph starts at the origin with an up step and terminates as soon as the path intersects the x-axis again. A down step cannot follow an up step and vice versa. The height of a bar graph is the maximum y coordinate attained by the graph, the width is the maximum x coordinate and the semi-perimeter is the sum of the number up and horizontal steps.

So for example, we have the bargraph (see Fig. 1).
Bargraphs have been studied particularly in statistical physics; see [4-6,9-14]. Other names used for bargraphs are wall polyominoes [7] or skylines [9]. In [1-3], the first three authors investigate various combinatorial statistics associated with bargraphs.

In this paper, we find the generating function for bargraphs of height at most h and use this to find an asymptotic expression for the average height of bargraphs of semi-perimeter n. We also consider the width or horizontal semi-perimeter of bargraphs with fixed total semi-perimeter.

A main tool for studying statistics of interest is a decomposition of bargraphs which is based on the first return to level one; see [13]. This was also used by Bousquet-Mélou and Rechnitzer in [5], where they called it the wasp-waist decomposition. The current authors have also made extensive use of it in [1-3].

The generating function for all bargraphs can be found in [5] amongst others. It is given by

$$
\begin{equation*}
B(x, y)=\frac{1-x-y-x y-\sqrt{(1-x-y-x y)^{2}-4 x^{2} y}}{2 x} \tag{1.1}
\end{equation*}
$$

[^0]http://dx.doi.org/10.1016/j.dam.2014.08.026
0166-218X/© 2014 Elsevier B.V. All rights reserved.

Fig. 1. A bargraph of height 6 , width 13 and semi-perimeter 25 .

Fig. 2. Wasp-waist factorisation of bargraphs.
where x counts the number of horizontal steps and y counts the number of up steps. If we substitute $z=y=x$ we obtain the generating function for the semi-perimeter counted by z, often called the isotropic generating function

$$
\begin{equation*}
B(z, z)=\frac{1-2 z-z^{2}-\sqrt{1-4 z+2 z^{2}+z^{4}}}{2 z} \tag{1.2}
\end{equation*}
$$

To find the asymptotics for $B(z, z)$, we must first compute the dominant singularity ρ which is the positive root of $D:=$ $1-4 z+2 z^{2}+z^{4}=0$. We find

$$
\begin{equation*}
\rho=\frac{1}{3}\left(-1-\frac{4 \times 2^{2 / 3}}{(13+3 \sqrt{33})^{1 / 3}}+(2(13+3 \sqrt{33}))^{1 / 3}\right)=0.295598 \ldots \tag{1.3}
\end{equation*}
$$

Then $B(z, z) \sim \psi_{1}(z)(1-z / \rho)^{1 / 2}$ and by singularity analysis (see [8]) we have

$$
\begin{equation*}
\left[z^{n}\right] B(z, z) \sim \frac{\psi_{1}(\rho) \rho^{-n}}{2 \sqrt{\pi n^{3}}} \tag{1.4}
\end{equation*}
$$

where

$$
\psi_{1}(\rho)=\sqrt{\frac{1-\rho-\rho^{3}}{\rho}}
$$

2. The generating function for bargraphs of height at most h

For a fixed $h \geq 1$, let $G(x, y, h)$ be the generating function for bargraphs in which x marks the total number of horizontal steps, y marks the total number of ascent steps and for which the height of the graph is less or equal to h.

For simplicity we will write $G_{h}:=G(x, y, h)$.
Following Bousquet-Mélou and Rechnitzer in [5], and the authors own use in [1-3] and in [13], the "wasp-waist" decomposition for G_{h} is represented symbolically in Fig. 2.

Restricting all heights to at most h, the decomposition yields

$$
G_{h}=\underbrace{x y}_{1}+\underbrace{x G_{h}}_{2}+\underbrace{y G_{h-1}}_{3}+\underbrace{x y G_{h-1}}_{4}+\underbrace{x G_{h-1} G_{h}}_{5} .
$$

Solving this for G_{h}, we obtain the continued fraction type recursion

$$
\begin{equation*}
G_{h}=\frac{x y+(1+x) y G_{h-1}}{1-x-x G_{h-1}} \tag{2.1}
\end{equation*}
$$

In order to solve this recursion, we write the rational function G_{h} as $\frac{p(h)}{q(h)}$, and so obtain from (2.1)

$$
\begin{equation*}
\frac{p(h)}{q(h)}=\frac{x y q(h-1)+(1+x) y p(h-1)}{(1-x) q(h-1)-x p(h-1)} . \tag{2.2}
\end{equation*}
$$

https://daneshyari.com/en/article/418645

Download Persian Version:

https://daneshyari.com/article/418645

Daneshyari.com

[^0]: * Corresponding author. Tel.: +27 117176241; fax: +27 865535618.

 E-mail addresses: Aubrey.Blecher@wits.ac.za (A. Blecher), Charlotte.Brennan@wits.ac.za (C. Brennan), Arnold.Knopfmacher@wits.ac.za (A. Knopfmacher), hprodinger@sun.ac.za (H. Prodinger).

