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a b s t r a c t

The integer partition polytope Pn is the convex hull of all integer partitions of n. We provide
a novel extended formulation of Pn, and use it to show that the extremality, adjacency, and
separation problems over Pn can be solved by linear programming without the ellipsoid
method.
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1. Introduction

An integer partition of n is a nonincreasing sequence of positive integers summing up to n. Integer partitions play an
important role in a variety of areas ofmathematics, in statisticalmechanics and theoretical physics, see [1,14] and references
therein.

We can and will identify here each partition of nwith a nonnegative integer vector x ∈ Zn
+
, where xk counts the number

of times k appears in the sum. For instance, the partition 1 + 1 + 3 = 5 corresponds to the vector x = (2, 0, 1, 0, 0). Let
Tn := {x ∈ Zn

+
:

n
k=1 kxk = n} be the set of integer partitions of n. The integer partition polytope is defined to be Pn :=

conv(Tn), the convex hull of all integer partitions of n.
The polyhedral approach in the integer partition theory gives rise tomany appealing questions. Introducing the polytope

of integer partitions revealed the previously unknown geometric structure of the set of partitions of any integer. It demon-
strated existence of new classes of partitions, in particular extreme integer partitions, which are the vertices of the partition
polytopes. Each partition of n is a convex combination of some vertices of Pn, thus the set of vertices of Pn forms a basis for
the set of partitions of n. This engenders a special interest in vertices.

As for every polytope, the other key elements of Pn are its facets. They have been studied in [11] and the vertices were
studied in [12,13]. However, no combinatorial characterizations of vertices or facets of Pn are available as yet.

In this regard, the following question arises: what is the computational complexity of the problem
• Extremality: for integer partition x ∈ Tn, decide if it is extreme on Pn.

It is easy to see that this problem is in co-NP: if x is not extreme then, by Caratheodory’s theorem, one can exhibit 2 ≤ r ≤

n+1 affinely independent integer partitions x1, . . . , xr ∈ Tn such that in the unique solution to


λixi = x,


λixi = 1, all
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λi are positive. However, the number of all partitions is exponential in n (see [1]), and therefore finding such xi by exhaustive
search takes exponential time.

The main purpose of this paper is to prove that the extremality problem can be decided in polynomial time with the use
of linear programming techniques. The lift and project method that we use to solve this problem occurred to be powerful
enough to prove polynomial decidability by linear programming of three more problems, which are canonical in combina-
torial optimization. These are
• Adjacency: for extreme partitions x, y ∈ Tn, decide if they are adjacent on Pn.
• Separation: for x ∈ Rn, find h ∈ Rn with hᵀx > hᵀy∀y ∈ Pn or assert x ∈ Pn.
• Optimization: for c ∈ Rn, find x∗

∈ Pn which attains min{cᵀx : x ∈ Pn}.

Since Pn is a knapsack type polytope, the optimization problem over Pn can be solved in polynomial time by dynamic
programming, see, for example, [6]. This implies that all other problems listed above can also be solved in polynomial time
by multiple applications of the ellipsoid method [4]. However, the ellipsoid method is a very heavy tool with a very large
running time. In this paper we show that all problems can in fact be solved in polynomial time using linear programming
without the ellipsoid method. We prove the following theorem, which summarizes our results about the four problems
above in a rounded and symmetric form:

Theorem 1.1. The extremality, adjacency, separation, and optimization problems over Pn can all be solved using linear program-
ming without the ellipsoid method.

A key ingredient in the proof of this theorem is the construction of a novel extended formulation for Pn, namely, a poly-
nomial time constructible polytope Qn of size polynomial in n such that Pn is the projection of Qn. Thus, the second main
outcome of this paper is the following result which is of interest in its own right.

Theorem 1.2. There exists a polynomial time constructible polytopeQn of size polynomial in n providing an extended formulation
for Pn, that is, satisfying

Pn = {x : ∃y (x, y) ∈ Qn}.

We believe that the advantage of our approach and of the extended formulation in Theorem 1.2 is that, dealing with
the set of integer partitions as a polytope and as a projection of another polytope of a polynomial sized description, helps
advance the understanding of the geometric structure of the set of partitions, and opens possibilities to applywell-developed
polyhedral methods to the study of partitions.

In Sections 2 and 3 we prove Theorems 1.2 and 1.1, respectively. We conclude in Section 4 with some final remarks.

2. Lifting the integer partition polytope

In this section we construct a polytope Qn given by an explicit inequality description of size polynomial in n, such that Pn
is a projection of Qn. As the first step of this construction we construct a digraph Gn with two distinguished vertices v0

0 , v
n
n

such that there is a bijection between integer partitions x ∈ Tn and v0
0 − vn

n dipaths in Gn. This construction is inspired by Pn
being a knapsack type polytope and the connection between the knapsack problem and dynamic programming [6].

The digraph Gn = (V , E) has the vertex set V = V 0
⊎ V 1

⊎ · · · ⊎ V n with V 0
:= {v0

0}, V
k

:= {vk
0, v

k
1, . . . , v

k
n} for k =

1, . . . , n − 1, and V n
:= {vn

n}. There are arcs only between consecutive sets V k−1, V k, where an arc (vk−1
i , vk

j ) is included
into E if and only if j−i

k ∈ Z+. Note that |V | = O(n2) and |E| = O(n3). Fig. 1 displays G6 for example.

Lemma 2.1. Integer partitions x ∈ Tn are in bijection with v0
0 − vn

n dipaths in Gn.

Proof. Given x ∈ Tn, consider any k, 1 ≤ k ≤ n; let i(k) :=
k−1

r=1 rxr and let j(k) :=
k

r=1 rxr ; include in the dipath the
arc (vk−1

i(k) , vk
j(k)), which exists in Gn since j(k)−i(k)

k = xk ∈ Z+. Since i(1) = 0 and j(n) = n, this results in a v0
0 − vn

n dipath.
Conversely, given a v0

0 − vn
n dipath, consider any k, 1 ≤ k ≤ n; let (vk−1

i(k) , vk
j(k)) be the unique arc from V k−1 to V k on that

dipath; set xk :=
j(k)−i(k)

k ∈ Z+. Then x ∈ Tn since i(1) = 0, j(k) = i(k + 1) for k = 1, . . . , n − 1, and j(n) = n, and hence

n
k=1

kxk =

n
k=1

j(k) − i(k) = (j(n) − i(n)) +

n−1
k=1

i(k + 1) − i(k) = j(n) − i(1) = n. �

Next we define two polytopes Dn and Qn with certain properties such that Qn is a suitable lifting of Dn and Pn is a suitable
projection of Qn. This is inspired by the polyhedral methods for dynamic programming in [7].

We begin with Dn which is a polytope with 0 − 1 vertices standing in bijection with v0
0 − vn

n dipaths in Gn. For this, we
assign to each arc (vk−1

i , vk
j ) in Gn a corresponding 0 − 1 variable yki,j, and we arrange all the arc variables in a vector

y =


yki,j : k = 1, . . . , n,

j − i
k

∈ Z+


∈ {0, 1}|E|.



Download English Version:

https://daneshyari.com/en/article/418655

Download Persian Version:

https://daneshyari.com/article/418655

Daneshyari.com

https://daneshyari.com/en/article/418655
https://daneshyari.com/article/418655
https://daneshyari.com

