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a b s t r a c t

In this paper we formulate and solve extremal problems in the Euclidean space Rd and
further in hypergraphs, originating from problems in stoichiometry and elementary linear
algebra. The notion of affine simplex is the bridge between the original problems and the
presented extremal theoremon set systems. As a sample corollary, it follows that if no triple
is collinear in a set S of n points in R3, then S contains at least

 n
4


− cn3 affine simplices for

some constant c . A function related to Sperner’s Theorem and its well-known extension
to reciprocal sums is also considered and its relation to Turán’s hypergraph problems is
discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The roots of the present study date back to the mid-1980s, to the paper by S. Kumar and Á. Pethő [7], concerning an
application of linear algebra in stoichiometry. From the algebraic point of view, their very natural question asks about the
number of those subsets of a set of vectors which are linearly dependent but each of whose proper subsets is independent.
Here we give an asymptotically tight solution for theminimum in terms of dimension and the number of vectors when low-
dimensional dependencies are excluded. Our method is to prove a more general result in extremal set theory (Theorem 6
below), hence without assuming anything about the structure of algebraic dependencies.

1.1. Motivation in chemistry

Restricting attention to a ‘‘universe’’ of D kinds of atoms (or atomic parts), each molecule (species) can be represented
with a vector inRD whose ith coordinatemeans the number of atoms of ith type in themolecule in question.1 Then a chemical
reaction naturally corresponds to a zero-sum linear combination of these vectors (using the law of mass balance).

The reaction is called minimal if none of the molecules, taking role in it, can be omitted so that the remaining ones
could form still a(nother) reaction. In the language of linear algebra this assumption is equivalent to the property that the
corresponding set of vectors is linearly dependent but each proper subset of it is independent, that is the defining condition
of linear algebraic simplex. Both from practical and theoretical purposes the following problem was raised:
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1 The types of atoms are supposed to be in a fixed order. E.g., if D = 3 and the universe is [C, H, O], then we have the vector (0, 2, 1) for H2O and (2, 4, 2)
for CH3COOH.
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Problem 1. What is the minimum and maximum number of linear algebraic simplices S j V in a set V of vectors in RD if
only the size |V| is given and V spans RD? What are the structures of sets V which contain extremal number of simplices?

The answer was given in [8]. Moreover, Problem 1 was generalized for matroids in [4]; actually its authors solved it a
decade earlier than published, see [3].

Concerning theminimum, the results in [8] show that almost all vectorsmust be parallel, i.e. almost allmolecules (species)
are isomer molecules or multiple doses. The problem where parallel vectors are excluded is still unsolved in general:

Problem 2. What is theminimumnumber of linear algebraic simplices S j V if only the size |V| is given,V does not contain
parallel vectors and V spans RD? What are the structures of sets V which contain the minimum number of simplices?

A conjecture on both the minimum number and the structure attaining it is stated in [9]. The cases D = 3 and D = 4
were solved in [9,17], respectively.

1.2. Geometric formulation

In the framework of linear algebra the problem is somewhat non-symmetric because the zero vector plays a special role.
This asymmetry can be eliminated if we translate the problem to the language of geometry. Moreover, restricting attention
to sets V ⊂ RD containing neither the zero vector nor a pair of parallel vectors, the dimension can be reduced from D to
d = D − 1: first associate each element v ∈ V with its direction λ · v (λ ∈ R), and then intersect this system ΛV with a
(D − 1)-dimensional hyperplane P which does not contain the origin and is not parallel to any element of V .

Themapping fromV to the setVP
:= ΛV ∩P is a bijection under which linear algebraic simplices S ⊂ V correspond to

affine simplices SP
⊂ RD−1, where a set S of k ≥ 3 points in the Euclidean d-space is called an affine simplex if S is contained

in some (k− 2)-dimensional hyperplane but no proper subset S ′ $ S is contained in a hyperplane of dimension |S ′
| − 2. For

instance, in R3 the following three types of affine simplices occur:
• three collinear points;
• four coplanar points, no three of which are collinear;
• five points, no four of which are coplanar.

Affine simplices can alternatively be defined by requiring that the vectors s2−s1, s3−s1, . . . , sk−s1 be linearly dependent
but their proper subsets should not (for every choice of a point to be labeled s1).

In cases of low dimension, as solved in [9,17], almost all points of the extremal configurations for Problem 2 attaining
the minimum number of affine simplices lie on one or two lines, i.e. mostly contain affine simplices of three points. In this
way the natural question arises to determine the minimum in the other extreme, where no three points are collinear. For
this reason our goal is to study point sets which contain no affine simplices smaller than a given size. The first interesting
case is R3.

Let S ⊂ Rd be a set of n points, no d of which lie on a (d − 2)-dimensional hyperplane. Then two kinds of subsets of S
form an affine simplex:
• d + 1 points on a hyperplane of dimension d − 1, or
• d + 2 points, no d + 1 of which lie on a common hyperplane of dimension d − 1.

Theorem 3. For every d ≥ 3 there is a constant c = c(d) with the following property. If S ⊂ Rd is a set of n points, no d of them
lying on a hyperplane of dimension d − 2, then S determines at least

 n
d+1


− cnd affine simplices.

Corollary 4. For any n points in the 3-space, no three being collinear, the number of coplanar quadruples plus the 5-tuples
containing no coplanar quadruples is at least

 n
4


− O(n3) as n → ∞.

These results are asymptotically tight, as shown by the obvious example of n coplanar points in R3 (no three of them
being on a line) and also for any d ≥ 3 by n points of Rd−1 in general position when embedded isometrically into Rd. Such
a set of points has exactly

 n
d+1


affine simplices. In fact, configurations with even fewer affine simplices exist, which in

addition span the d-space. For instance, n−1 points of Rd−1 in general position embedded in a hyperplane of Rd plus an nth
point outside that hyperplane generate just


n−1
d+1


affine simplices (as no affine simplex contains the nth point).

In R3, the two arrangements of points just mentioned yield 1
24n

4
−

1
4n

3
+ O(n2) and 1

24n
4
−

5
12n

3
+ O(n2), respectively.

Currently we do not knowwhether or not the latter error term 5
12n

3 is asymptotically tight. We do know, however, that the
construction above is not extremal; an improvement of the order O(n2) will be proved in Proposition 7.

1.3. Combinatorial formulation

Here we put the problems and results above in a more general setting. Let H = (X, E) be a hypergraph, where X is
the finite vertex set and E is the edge set consisting of subsets of X . We extend the notion of linear hypergraph (also called
‘‘simple’’ or ‘‘almost disjoint’’ in some parts of the literature) as follows.
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