Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Series-parallel chromatic hypergraphs

Ioan Tomescu^{a,*}, Syed Ahtsham Ul Haq Bokhary^b

^a Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania ^b Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore, Pakistan

ARTICLE INFO

Article history: Received 23 September 2008 Received in revised form 29 June 2009 Accepted 2 September 2009 Available online 1 October 2009

Keywords: Two-terminal series-parallel chromatic hypergraph Multibridge hypergraph Linear h-uniform cycle Chromatic polynomial Chromatic uniqueness

ABSTRACT

In this paper two-terminal series-parallel chromatic hypergraphs are introduced and for this class of hypergraphs it is shown that the chromatic polynomial can be computed with polynomial complexity. It is also proved that *h*-uniform multibridge hypergraphs $\theta(h; a_1, a_2, \ldots, a_k)$ are chromatically unique for $h \ge 3$ if and only if h = 3 and $a_1 = a_2 = \cdots = a_k = 1$, i.e., when they are sunflower hypergraphs having a core of cardinality 2 and all petals being singletons.

© 2009 Elsevier B.V. All rights reserved.

1. Notation and preliminary results

A simple hypergraph $H = (V, \mathcal{E})$ having order n = |V| and size $m = |\mathcal{E}|$ consists of a vertex-set V(H) = V and an edge-set $E(H) = \mathcal{E}$, where $E \subseteq V$ and $|E| \ge 2$ for each edge $E \in \mathcal{E}$. If \mathcal{E} is a multiset, H will be called a *multihypergraph*. For $h \ge 2$, H is said to be *h*-uniform, or an *h*-hypergraph, if |E| = h for each $E \in \mathcal{E}$ and H is *linear* if no two edges intersect at more than one vertex. A hypergraph for which no edge is a subset of any other is called *Sperner*.

The number of edges containing a vertex x is its *degree* $d_H(x)$. H is said to be *connected* if for any two vertices $u, v \in V(H)$, $u \neq v$, there are vertices $x_0 = u, x_1, \ldots, x_k = v$ and edges $E_1, \ldots, E_k \in E(H)$ such that $x_{i-1}, x_i \in E_i$ for each $i, 1 \leq i \leq k$.

A cycle *C* of length *k* in *H* [1] is a subhypergraph comprising *k* distinct vertices x_1, \ldots, x_k and *k* distinct edges E_1, \ldots, E_k of *H* such that $x_i, x_{i+1} \in E_i$ for each *i*, $1 \le i \le k - 1$ and $x_1, x_k \in E_k$. *C* is said to be elementary if $d_C(x_i) = 2$ for each *i* and $d_C(y) = 1$ for each other vertex *y* in $\bigcup_{i=1}^k E_i$.

We shall denote the elementary *h*-uniform cycle with *m* edges by C_m^h ; clearly it is linear and has order m(h - 1). An *h*-uniform *hypertree* is a connected linear *h*-hypergraph without cycles.

For any $a_1, a_2, \ldots, a_k \in \mathbb{N}$ and $h \ge 2$ we denote by $\theta(h; a_1, a_2, \ldots, a_k)$ the *h*-uniform linear hypergraph consisting of *k h*-uniform linear paths of length a_1, a_2, \ldots, a_k , joined in parallel and having only two vertices *s* and *t* in common. $\theta(4; 3, 3, 2)$ is illustrated in Fig. 1. $\theta(h; a_1, a_2, \ldots, a_k)$ will be called a *multibridge* hypergraph (or, more precisely, a *k*-bridge hypergraph). Note that $\theta(2; a_1, a_2, \ldots, a_k)$ is called a multibridge graph [7].

If $\lambda \in \mathbb{N}$, a λ -coloring of a hypergraph H is a function $f : V(H) \to \{1, ..., \lambda\}$ such that for each edge E of H there exist x, y in E such that $f(x) \neq f(y)$. The number of λ -colorings of H is given by a polynomial $P(H, \lambda)$ of degree |V(H)| in λ , called the *chromatic polynomial* of H, whose coefficients are described in the following lemma.

* Corresponding author. Fax: +40 213156990.

E-mail addresses: ioan@fmi.unibuc.ro (I. Tomescu), sihtsham@gmail.com (S.A. Bokhary).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2009.09.003

Fig. 1. θ(4; 3, 3, 2).

Lemma 1.1 ([10]). Let *H* be a hypergraph of order *n*. Then $P(H, \lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda$, where $a_i = \sum_{j\geq 0} (-1)^j N(i,j)$ ($1 \leq i \leq n-1$) and N(i,j) denotes the number of subhypergraphs of *H* with *n* vertices, *i* components and *j* edges.

Chromatic polynomials of elementary *h*-uniform cycles and of *h*-uniform hypertrees are given by the following lemma.

Lemma 1.2 ([6]). If C_m^h is an elementary h-uniform cycle with m edges and T_k^h is any h-uniform hypertree with k edges then $P(C_m^h, \lambda) = (\lambda^{h-1} - 1)^m + (-1)^m (\lambda - 1)$ and $P(T_k^h, \lambda) = \lambda (\lambda^{h-1} - 1)^k$.

Two hypergraphs *H* and *G* are said to be *chromatically equivalent*, written as $H \sim G$, if $P(H, \lambda) = P(G, \lambda)$. In the class of Sperner hypergraphs a simple hypergraph *H* is said to be *chromatically unique* (or χ -*unique*) if *H* is isomorphic to *H'* for every simple hypergraph *H'* such that $H' \sim H$. This means that the structure of *H* is uniquely determined up to isomorphism by its chromatic polynomial. The notion of χ -unique graphs was first introduced and studied by Chao and Whitehead [5].

For $h \ge 3$ let SH(n, p, h) denote the *h*-hypergraph *H* (unique up to isomorphism) defined as follows [11]: |V(H)| = n = h + (k-1)p ($1 \le p \le h-1$), $|\mathcal{E}(H)| = k$ and there exist a "core" $X \subset V(H)$, |X| = h - p and an equipartition of $V(H) \setminus X$ into *k* "petals": $V(H) \setminus X = Y_1 \cup \cdots \cup Y_k$, where $|Y_1| = \cdots = |Y_k| = p$ such that $\mathcal{E}(H) = (X \cup Y_i)_{1 \le i \le k}$. SH(n, p, k) is called the *sunflower hypergraph*. Note that this terminology goes back to Erdős and Rado [9].

The following two theorems explain the chromaticity of sunflower hypergraphs.

Theorem 1.1 ([3]). SH(n, 1, h) is chromatically unique.

Theorem 1.2 ([11]). SH(n, p, h) is not chromatically unique for every $p, k \ge 2$.

In [2] it was shown that C_m^h is not chromatically unique for m = 3; in the next section we shall prove that this property is true for every cycle of length $m \ge 3$.

Now we shall define the notion of two-terminal series-parallel chromatic hypergraph, which extends the notion of the two-terminal series-parallel graph (see e.g. [4]).

A two-terminal chromatic hypergraph is a quintuple $(H, s, t, \varphi_1, \varphi_2)$, where H = (V, E) is a multihypergraph, $s, t \in V, s \neq t$ (*s* is called the *source* and *t* is called the *sink* of H) and φ_1, φ_2 are two functions of the variable λ .

The series composition of the two-terminal chromatic hypergraphs $((V_1, E_1), s_1, t_1, \varphi_1^1, \varphi_2^1)$ and $((V_2, E_2), s_2, t_2, \varphi_1^2, \varphi_2^2)$ with $t_1 = s_2$ and $V_1 \cap V_2 = \{t_1\}$ is the two-terminal chromatic hypergraph $((V_1 \cup V_2, E_1 \cup E_2), s_1, t_2, \varphi_1, \varphi_2)$, where

$$\varphi_1 = \frac{1}{\lambda} \left(\varphi_1^1 \varphi_1^2 + \frac{1}{\lambda - 1} \varphi_2^1 \varphi_2^2 \right); \qquad \varphi_2 = \frac{1}{\lambda} \left(\varphi_1^1 \varphi_2^2 + \varphi_2^1 \varphi_1^2 + \frac{\lambda - 2}{\lambda - 1} \varphi_2^1 \varphi_2^2 \right). \tag{1}$$

The *parallel composition* of two-terminal chromatic hypergraphs $((V_1, E_1), s_1, t_1, \varphi_1^1, \varphi_2^1)$ and $((V_2, E_2), s_2, t_2, \varphi_1^2, \varphi_2^2)$ with $s_1 = s_2$ and $t_1 = t_2$ and $V_1 \cap V_2 = \{s_1, t_1\}$ is the two-terminal chromatic hypergraph $((V_1 \cup V_2, E_1 \cup E_2), s_1, t_1, \varphi_1, \varphi_2)$, where

$$\varphi_1 = \frac{1}{\lambda} \varphi_1^1 \varphi_1^2; \qquad \varphi_2 = \frac{1}{\lambda(\lambda - 1)} \varphi_2^1 \varphi_2^2.$$
(2)

We shall propose a recursive definition of a two-terminal series-parallel (for short, SP) chromatic hypergraph. The two-terminal hypergraph (H, s, t, φ_1 , φ_2) is a *two-terminal SP chromatic hypergraph* if it consists of only one edge E with two distinct vertices s, $t \in E$ as source and sink and

$$\varphi_1 = \lambda(\lambda^{h-2} - 1); \qquad \varphi_2 = (\lambda - 1)\lambda^{h-1}, \tag{3}$$

where h = |E| (a so-called *basic* two-terminal SP hypergraph) or it results from the application of the series or the parallel composition of two-terminal SP chromatic hypergraphs. Note that if some basic two-terminal SP chromatic hypergraphs have cardinality 2, by parallel composition of these edges there may appear parallel edges of cardinality 2, and the resulting two-terminal SP chromatic hypergraphs are multihypergraphs. The chromatic meaning of the functions φ_1 and φ_2 will be explained in the next section.

Download English Version:

https://daneshyari.com/en/article/418671

Download Persian Version:

https://daneshyari.com/article/418671

Daneshyari.com