Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Series–parallel chromatic hypergraphs

Ioan Tomescu ª,*, Syed Ahtsham Ul Haq Bokhary ^{[b](#page-0-2)}

a *Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania* ^b *Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore, Pakistan*

a r t i c l e i n f o

Article history: Received 23 September 2008 Received in revised form 29 June 2009 Accepted 2 September 2009 Available online 1 October 2009

Keywords: Two-terminal series–parallel chromatic hypergraph Multibridge hypergraph Linear *h*-uniform cycle Chromatic polynomial Chromatic uniqueness

a b s t r a c t

In this paper two-terminal series–parallel chromatic hypergraphs are introduced and for this class of hypergraphs it is shown that the chromatic polynomial can be computed with polynomial complexity. It is also proved that *h*-uniform multibridge hypergraphs θ (*h*; a_1, a_2, \ldots, a_k) are chromatically unique for $h \geq 3$ if and only if $h = 3$ and $a_1 =$ $a_2 = \cdots = a_k = 1$, i.e., when they are sunflower hypergraphs having a core of cardinality 2 and all petals being singletons.

© 2009 Elsevier B.V. All rights reserved.

PPLIED
ATHEMATICS

1. Notation and preliminary results

A simple hypergraph $H = (V, \mathcal{E})$ having order $n = |V|$ and size $m = |\mathcal{E}|$ consists of a vertex-set $V(H) = V$ and an edge-set $E(H) = \mathcal{E}$, where $E \subseteq V$ and $|E| > 2$ for each edge $E \in \mathcal{E}$. If \mathcal{E} is a multiset, *H* will be called a *multihypergraph*. For $h > 2$, *H* is said to be *h*-*uniform*, or an *h*-hypergraph, if $|E| = h$ for each $E \in \mathcal{E}$ and H is *linear* if no two edges intersect at more than one vertex. A hypergraph for which no edge is a subset of any other is called *Sperner*.

The number of edges containing a vertex *x* is its *degree* $d_H(x)$. *H* is said to be *connected* if for any two vertices $u, v \in$ $V(H)$, $u \neq v$, there are vertices $x_0 = u, x_1, \ldots, x_k = v$ and edges $E_1, \ldots, E_k \in E(H)$ such that $x_{i-1}, x_i \in E_i$ for each $i, 1 \le i \le k$.

A cycle C of length k in H [\[1\]](#page--1-0) is a subhypergraph comprising k distinct vertices x_1, \ldots, x_k and k distinct edges E_1, \ldots, E_k of H such that $x_i, x_{i+1} \in E_i$ for each i, $1 \le i \le k-1$ and $x_1, x_k \in E_k$. C is said to be elementary if $d_C(x_i) = 2$ for each i and $d_C(y) = 1$ for each other vertex *y* in $\bigcup_{i=1}^k E_i$.

We shall denote the elementary *h*-uniform cycle with m edges by \mathcal{C}_m^h ; clearly it is linear and has order $m(h-1)$. An *h*-uniform *hypertree* is a connected linear *h*-hypergraph without cycles.

For any $a_1, a_2, \ldots, a_k \in \mathbb{N}$ and $h \geq 2$ we denote by $\theta(h; a_1, a_2, \ldots, a_k)$ the *h*-uniform linear hypergraph consisting of *k h*uniform linear paths of length a_1, a_2, \ldots, a_k , joined in parallel and having only two vertices *s* and *t* in common. $\theta(4; 3, 3, 2)$ is illustrated in [Fig. 1.](#page-1-0) θ (h; a_1, a_2, \ldots, a_k) will be called a *multibridge* hypergraph (or, more precisely, a *k*-*bridge hypergraph*). Note that $\theta(2; a_1, a_2, \ldots, a_k)$ is called a multibridge graph [\[7\]](#page--1-1).

If $\lambda \in \mathbb{N}$, a λ -coloring of a hypergraph *H* is a function $f: V(H) \to \{1, \ldots, \lambda\}$ such that for each edge *E* of *H* there exist *x*, *y* in *E* such that $f(x) \neq f(y)$. The number of λ -colorings of *H* is given by a polynomial $P(H, \lambda)$ of degree $|V(H)|$ in λ , called the *chromatic polynomial* of *H*, whose coefficients are described in the following lemma.

Corresponding author. Fax: +40 213156990.

E-mail addresses: ioan@fmi.unibuc.ro (I. Tomescu), sihtsham@gmail.com (S.A. Bokhary).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2009 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2009.09.003](http://dx.doi.org/10.1016/j.dam.2009.09.003)

Fig. 1. θ (4: 3, 3, 2).

Lemma 1.1 ([\[10\]](#page--1-2)). Let H be a hypergraph of order n. Then $P(H, \lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda$, where $a_i = \sum_{j \geq 0} (-1)^j$ $N(i, j)$ ($1 \le i \le n - 1$) and $N(i, j)$ denotes the number of subhypergraphs of H with n vertices, *i* components and *j* edges.

Chromatic polynomials of elementary *h*-uniform cycles and of *h*-uniform hypertrees are given by the following lemma.

Lemma 1.2 ([\[6\]](#page--1-3)). If C_m^h is an elementary h-uniform cycle with m edges and T_k^h is any h-uniform hypertree with k edges then $P(C_m^h, \lambda) = (\lambda^{h-1} - 1)^m + (-1)^m (\lambda - 1)$ and $P(T_k^h, \lambda) = \lambda (\lambda^{h-1} - 1)^k$.

Two hypergraphs *H* and *G* are said to be *chromatically equivalent*, written as *H* ∼ *G*, if *P*(*H*, λ) = *P*(*G*, λ). In the class of Sperner hypergraphs a simple hypergraph *H* is said to be *chromatically unique* (or χ-*unique*) if *H* is isomorphic to *H* 0 for every simple hypergraph *H'* such that *H'* \sim *H*. This means that the structure of *H* is uniquely determined up to isomorphism by its chromatic polynomial. The notion of χ-unique graphs was first introduced and studied by Chao and Whitehead [\[5\]](#page--1-4).

For $h \geq 3$ let *SH*(*n*, *p*, *h*) denote the *h*-hypergraph *H* (unique up to isomorphism) defined as follows [\[11\]](#page--1-5): $|V(H)| = n$ $h + (k-1)p$ $(1 \le p \le h-1)$, $|\mathcal{E}(H)| = k$ and there exist a "core" $X \subset V(H)$, $|X| = h - p$ and an equipartition of $V(H) \setminus X$ into k "petals": $V(H) \setminus X = Y_1 \cup \cdots \cup Y_k$, where $|Y_1| = \cdots = |Y_k| = p$ such that $\mathcal{E}(H) = (X \cup Y_i)_{1 \le i \le k}$. SH (n, p, k) is called the *sunflower hypergraph*. Note that this terminology goes back to Erdős and Rado [\[9\]](#page--1-6).

The following two theorems explain the chromaticity of sunflower hypergraphs.

Theorem 1.1 (*[\[3\]](#page--1-7)*). *SH*(*n*, 1, *h*) *is chromatically unique.*

Theorem 1.2 ($[11]$). *SH*(n , p , h) *is not chromatically unique for every* p , $k \geq 2$.

In [\[2\]](#page--1-8) it was shown that C_m^h is not chromatically unique for $m=3$; in the next section we shall prove that this property is true for every cycle of length $m > 3$.

Now we shall define the notion of two-terminal series–parallel chromatic hypergraph, which extends the notion of the two-terminal series–parallel graph (see e.g. [\[4\]](#page--1-9)).

A *two-terminal chromatic hypergraph* is a quintuple $(H, s, t, \varphi_1, \varphi_2)$, where $H = (V, E)$ is a multihypergraph, $s, t \in V$, $s \neq$ *t* (*s* is called the *source* and *t* is called the *sink* of *H*) and φ_1 , φ_2 are two functions of the variable λ .

The *series composition* of the two-terminal chromatic hypergraphs $((V_1, E_1), s_1, t_1, \varphi_1^1, \varphi_2^1)$ and $((V_2, E_2), s_2, t_2, \varphi_1^2, \varphi_2^2)$ with $t_1 = s_2$ and $V_1 \cap V_2 = \{t_1\}$ is the two-terminal chromatic hypergraph $((V_1 \cup V_2, E_1 \cup E_2), s_1, t_2, \varphi_1, \varphi_2)$, where

$$
\varphi_1 = \frac{1}{\lambda} \left(\varphi_1^1 \varphi_1^2 + \frac{1}{\lambda - 1} \varphi_2^1 \varphi_2^2 \right); \qquad \varphi_2 = \frac{1}{\lambda} \left(\varphi_1^1 \varphi_2^2 + \varphi_2^1 \varphi_1^2 + \frac{\lambda - 2}{\lambda - 1} \varphi_2^1 \varphi_2^2 \right).
$$
\n(1)

The parallel composition of two-terminal chromatic hypergraphs $((V_1, E_1), s_1, t_1, \varphi_1^1, \varphi_2^1)$ and $((V_2, E_2), s_2, t_2, \varphi_1^2, \varphi_2^2)$ with $s_1 = s_2$ and $t_1 = t_2$ and $V_1 \cap V_2 = \{s_1, t_1\}$ is the two-terminal chromatic hypergraph $((V_1 \cup V_2, E_1 \cup E_2), s_1, t_1, \varphi_1, \varphi_2),$ where

$$
\varphi_1 = \frac{1}{\lambda} \varphi_1^1 \varphi_1^2; \qquad \varphi_2 = \frac{1}{\lambda(\lambda - 1)} \varphi_2^1 \varphi_2^2. \tag{2}
$$

We shall propose a recursive definition of a two-terminal series–parallel (for short, SP) chromatic hypergraph. The twoterminal hypergraph $(H, s, t, \varphi_1, \varphi_2)$ is a *two-terminal SP chromatic hypergraph* if it consists of only one edge *E* with two distinct vertices *s*, $t \in E$ as source and sink and

$$
\varphi_1 = \lambda(\lambda^{h-2} - 1); \qquad \varphi_2 = (\lambda - 1)\lambda^{h-1}, \tag{3}
$$

where $h = |E|$ (a so-called *basic* two-terminal SP hypergraph) or it results from the application of the series or the parallel composition of two-terminal SP chromatic hypergraphs. Note that if some basic two-terminal SP chromatic hypergraphs have cardinality 2, by parallel composition of these edges there may appear parallel edges of cardinality 2, and the resulting two-terminal SP chromatic hypergraphs are multihypergraphs. The chromatic meaning of the functions φ_1 and φ_2 will be explained in the next section.

Download English Version:

<https://daneshyari.com/en/article/418671>

Download Persian Version:

<https://daneshyari.com/article/418671>

[Daneshyari.com](https://daneshyari.com)