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1. Notation and preliminary results

A simple hypergraph H = (V, &) having order n = |V| and size m = |&| consists of a vertex-set V(H) = V and an edge-set
E(H) = &,whereE C V and |E| > 2 for each edge E € §.If & is a multiset, H will be called a multihypergraph. Forh > 2, H
is said to be h-uniform, or an h-hypergraph, if |E| = h for each E € & and H is linear if no two edges intersect at more than
one vertex. A hypergraph for which no edge is a subset of any other is called Sperner.

The number of edges containing a vertex x is its degree dy (x). H is said to be connected if for any two vertices u, v €

V(H),u # v, there are vertices xo = u,X1,...,X = v and edges Eq, ..., E, € E(H) such that x;_q,x; € E; for each
ih1<i<k
A cycle C of length k in H [1] is a subhypergraph comprising k distinct vertices x1, . . ., x; and k distinct edges Eq, ..., Ej

of H such that x;, x;;1 € E;foreachi, 1 <i < k — 1and xy, X, € E. C is said to be elementary if dc (x;) = 2 for each i and
dc(y) = 1 for each other vertex y in Ule E;.

We shall denote the elementary h-uniform cycle with m edges by C,’;; clearly it is linear and has order m(h — 1).

An h-uniform hypertree is a connected linear h-hypergraph without cycles.

Foranyas, ay,...,a, € Nandh > 2wedenote by 6 (h; ay, ao, .. ., a;) the h-uniform linear hypergraph consisting of k h-
uniform linear paths of length a,, ay, . . ., ai, joined in parallel and having only two vertices s and t in common. 6 (4; 3, 3, 2)
isillustrated in Fig. 1. 6 (h; ay, aa, . . ., ax) will be called a multibridge hypergraph (or, more precisely, a k-bridge hypergraph).
Note that 6(2; ay, ay, . . ., ay) is called a multibridge graph [7].

If & € N, a A-coloring of a hypergraph H is a function f : V(H) — {1, ..., A} such that for each edge E of H there exist x,
y in E such that f(x) # f(y). The number of A-colorings of H is given by a polynomial P(H, A) of degree |V (H)| in A, called
the chromatic polynomial of H, whose coefficients are described in the following lemma.
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Fig. 1. 6(4;3,3,2).

Lemma 1.1 ([10]). Let H be a hypergraph of order n. Then P(H, A) = A" 4+ a,_1A" ! 4+ --- 4+ a1A, where q; = ijo(—l)/
N(@i,j) (1 <i<n—1)andN(i,j) denotes the number of subhypergraphs of H with n vertices, i components and j edges.

Chromatic polynomials of elementary h-uniform cycles and of h-uniform hypertrees are given by the following lemma.

Lemma 1.2 ([6]). If C,?q is an elementary h-uniform cycle with m edges and T,? is any h-uniform hypertree with k edges then
P(Ch. ) = AT =)™ 4+ (=1)™(A — D and P(T{, 1) = A1 — DK,

Two hypergraphs H and G are said to be chromatically equivalent, written as H ~ G, if P(H, A) = P(G, A). In the class
of Sperner hypergraphs a simple hypergraph H is said to be chromatically unique (or x-unique) if H is isomorphic to H’ for
every simple hypergraph H' such that H' ~ H.This means that the structure of H is uniquely determined up to isomorphism
by its chromatic polynomial. The notion of y -unique graphs was first introduced and studied by Chao and Whitehead [5].

For h > 3 let SH(n, p, h) denote the h-hypergraph H (unique up to isomorphism) defined as follows [11]: |V(H)| = n =
h4+k—-1p(1 <p<h-—1),|8(H)| = kand there exist a “core” X C V(H), |X| = h — p and an equipartition of V(H) \ X
into k “petals”: V(H) \ X =Y; U--- UYj, where |Yy| = --- = |Yi| = psuch that §(H) = (X U Y;)1<i<k. SH(n, p, k) is called
the sunflower hypergraph. Note that this terminology goes back to Erdés and Rado [9].

The following two theorems explain the chromaticity of sunflower hypergraphs.

Theorem 1.1 ([3]). SH(n, 1, h) is chromatically unique.

Theorem 1.2 ([11]). SH(n, p, h) is not chromatically unique for every p, k > 2.

In [2] it was shown that C,’; is not chromatically unique for m = 3; in the next section we shall prove that this property is
true for every cycle of length m > 3.

Now we shall define the notion of two-terminal series—parallel chromatic hypergraph, which extends the notion of the
two-terminal series—parallel graph (see e.g. [4]).

A two-terminal chromatic hypergraph is a quintuple (H, s, t, ¢1, ¢2), where H = (V, E) is amultihypergraph,s, t € V, s #
t (s is called the source and t is called the sink of H) and ¢4, ¢, are two functions of the variable .

The series composition of the two-terminal chromatic hypergraphs ((V1, E1), s1, t1, ¢}, ¢3) and ((V2, E2), 2, b2, 93, ¢3)
with t; = s, and V; NV, = {t;} is the two-terminal chromatic hypergraph ((V; U V,, E{ U Ey), s1, t2, @1, ¢2), Where

1 1 1 A —2
or = (w%w? + mwéwﬁ) Dom=o (w%w% + 0,01 + ﬁwéwﬁ) : (M

The parallel composition of two-terminal chromatic hypergraphs ((Vy, E1), s1, t1, <p}, ga;) and ((V,, Ey), $3, to, wf, <p§)
withs; = s, and t; = t; and V; NV, = {sq, t;} is the two-terminal chromatic hypergraph ((V; U V,, E{ UE>), s1, t1, @1, ¢2),
where

L S A )
PRk A — 1) 2%
We shall propose a recursive definition of a two-terminal series-parallel (for short, SP) chromatic hypergraph. The two-
terminal hypergraph (H, s, t, ¢1, ¢2) is a two-terminal SP chromatic hypergraph if it consists of only one edge E with two
distinct vertices s, t € E as source and sink and

pr=2"2—1); = —DAT, (3)

where h = |E| (a so-called basic two-terminal SP hypergraph) or it results from the application of the series or the parallel
composition of two-terminal SP chromatic hypergraphs. Note that if some basic two-terminal SP chromatic hypergraphs
have cardinality 2, by parallel composition of these edges there may appear parallel edges of cardinality 2, and the resulting
two-terminal SP chromatic hypergraphs are multihypergraphs. The chromatic meaning of the functions ¢; and ¢, will be
explained in the next section.
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