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a b s t r a c t

The coil-in-the-box problem asks for a simple chordless cycle of maximum length in the
n-cube. Such cycles are also known as n-dimensional spread 2 circuit codes, or n-coils. This
problemhas been solved earlier for n ≤ 7. An approach based on canonical augmentation is
here used to solve the problem for n = 8 and show that themaximum length of a chordless
cycle in the 8-cube is 96. Several new 8-coils of length 96 are presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Apath (resp. cycle) in a graphG is chordless if every two vertices in the path (cycle) that are not successive have a distance
of at least 2 in G. An n-snake is a simple chordless path in an n-cube. An n-coil is a simple chordless cycle in an n-cube. An
n-coil is also known as an n-dimensional spread 2 circuit code [12].

The problem of finding long coils and snakes in an n-cube was originally described by Kautz in 1958 [6]. Since then, the
problem has attracted much attention in the research community, partly because long coils and snakes have some appli-
cations related to coding. For example, an n-coil corresponds to a cyclic gray code with certain error-detection capabilities,
whose applications include analog to digital conversion [12]. One of the most recent examples is rank modulation [18].

So far the exact length of the longest n-snake and n-coil has been determined for n ≤ 7. For n ≥ 8, only upper and lower
bounds were previously known. Lower bounds are obtained constructively, and the techniques used for small n have in-
cluded exhaustive and non-exhaustive searchwith pruning [4,15], nestedMonte-Carlo search [7], evolutionarymethods [1],
reduction to SAT [20], gluing together smaller snakes [17], and methods based on symmetries and repetition [17,12]. We
refer to [7] for an overview of these earlier methods. Several asymptotic upper and lower bounds have also been published
[14,16,19], the best asymptotic upper bound for the length (number of edges) of a coil currently being [19]

2n−1(1 − 1/(89
√
n) + O(1/n)).

This asymptotic bound is not very tight for small n.
For general graphs the problem of determining whether a given graph contains a chordless cycle of length at least k is

known to be NP-complete [2,3].
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We refer to the length of the longest n-coil as f (n). Previously the values of f (n) have been determined for n ≤ 7, and are
2, 4, 6, 8, 14, 26, and 48 (sequence A000937 in OEIS [13]). In the current work we extend this list and show that f (8) = 96.
It was already known that 96 is a lower bound for f (8) (see [12]). Earlier only one coil of length 96 has been published. In
the current work we present several new coils of length 96.

We use an approach based on canonical augmentation to exhaustively generate (or show the nonexistence of) all n-coils
of length greater than a given threshold. Ourmethod relies on the observation that by the pigeonhole principle some (n−1)-
dimensional part of a long n-coil obtained by fixing a coordinate will contain few disjoint snakes and many vertices. This
observation can be applied recursively to the sets of disjoint snakes in smaller dimensions. We apply our method to the case
n = 8 and show that there are no 8-coils with more than 96 edges.

The paper is organized as follows. In Section 2 we give some necessary background information on n-cubes and n-coils.
In Section 3 we describe the canonical augmentation method and how it can be applied to the search of n-coils. In Section 4
we derive upper and lower bounds that help restrict the search space, and in Section 5 we give some details on how to
implement different parts of the method. In Section 6 we show how the results of our search can be verified with double
counting, and finally we present the results in Section 7. Some 8-coils of length 96 are listed in Table 5.

2. Preliminaries

The n-cube is a graph that has one vertex for each binary word of length n and an edge between a pair of vertices if the
Hamming distance between the corresponding binary words is 1. A binary code of length n is a subset of binary words of
length n. The Hamming distance between two codewords is equal to the distance between the corresponding vertices in the
n-cube. Sometimes it is convenient to think of a code as a subset of vertices in the n-cube, and vice versa.

An automorphism in the automorphism group Γn of the n-cube consists of a permutation of coordinates followed by
addition of a constant vector to the corresponding binary word, giving |Γn| = 2nn!. Two n-coils are said to be equivalent if
there is an automorphism in Γn that maps one to the other. The equivalence of n-coils can be studied in the framework of
equivalence of codes [5, Section 2.3].

The binary words that correspond to two successive vertices in a coil differ in exactly one coordinate, so a coil can be
represented as a list that shows coordinate changes between successive vertices. Such a list is called a coordinate sequence
(or transition sequence). Assume that the vertices of the coil are s0s1s2 . . . sk−1. In the coordinate sequence t0t1 . . . tk−1, the
value of ti is the coordinate in which the binary words for vertices si and si+1 differ (indices takenmodulo k). An n-coil is said
to be degenerate, if there is a dimension that does not appear in its coordinate sequence. Throughout this paper we focus on
non-degenerate coils, since degenerate coils cannot be of maximum length.

Note that the length of an n-coil has to be an even number, since in order to leave a vertex and return back to it each
coordinate has to occur an even number of times in the coordinate sequence.

We define an n-dimensional snake collection to be a generalized version of an n-snake that, instead of containing just one
snake, can contain multiple snakes. In more detail, it is a subgraph of the n-cube that consists of chordless disjoint paths,
such that each path is an n-snake, and the distance between any two vertices in different paths is at least 2. The motivation
behind this definition is that we can create an (n − 1)-dimensional snake collection or a half from an (non-degenerate)
n-coil by considering the induced subgraph obtained by fixing some value v for some coordinate i. This subgraph consists of
the nodes of the n-coil whose labels have value v in coordinate i and of the edges between these nodes. Note that if a snake
collection is created in this way from a coil with more than 4 edges, it will only contain snakes with at least two edges, since
a snake of length 1 would force a chord in the other (n− 1)-dimensional half of the coil, and a snake of length 0 would have
degree at most 1 in the original coil. These properties only hold for halves; in general, a snake collection can contain snakes
with fewer than 2 edges.

3. Canonical augmentation

Canonical augmentation was originally introduced by McKay [10] as a method for recursively generating one represen-
tative from each equivalence class of a set of objects. In canonical augmentation it is required that objects be generated ‘‘in
a canonical way’’. An overview of the method can be found in [5, Section 4.2.3].

Canonical augmentation works as follows. In the recursive search, each generated object X has a sequence of parents
p(X), p(p(X)), . . . . For each object X , we define a canonical parent w(X) which fulfils X ∼= Y H⇒ w(X) ∼= w(Y ). An object
is rejected in the recursive search if it was not generated from its canonical parent, i.e., if w(X) � p(X). An object is also
rejected if it is equivalent to some other object generated previously from the same parent. It can be shown that with this
method exactly one representative from each equivalence class will be generated.

One benefit of using canonical augmentation is that no further isomorph rejection is needed after the algorithm finishes.
Another benefit is a possibility for validating the resultswith double counting techniques, which are described inmore detail
in Section 6.

Canonical augmentation can be applied to (non-degenerate) coils by using an n-level recursive search that builds n-coils
by extending partial coils, i.e., snake collections, in smaller dimensions. At levels i < n of the recursive search i-dimensional
snake collections are built by extending (i − 1)-dimensional snake collections, and at level n complete n-coils are formed
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