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a b s t r a c t

A strong edge-colouring of a graph is a proper edge-colouring where each colour class in-
duces amatching. It is known that every planar graphwithmaximumdegree∆has a strong
edge-colouring with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the
graph has girth 6, and 4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part
of the paper, we raise some questions related to a long-standing conjecture of Vizing on
proper edge-colouring of planar graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A proper edge-colouring of a graph G = (V , E) is an assignment of colours to the edges of the graph such that two adjacent
edges do not use the same colour. We use the standard notation, χ ′(G), to denote the chromatic index of G. A strong edge-
colouring (called also distance 2 edge-colouring) of a graph G is a proper edge-colouring of G, such that the every set of
edges using the same colour induces a matching. We denote by χ ′

s(G) the strong chromatic index of G which is the smallest
integer k such that G can be strongly edge-coloured with k colours. Strong edge-colouring has been studied extensively in
the literature by different authors (see [4,5,11,6,1,8,7,2,3,9]).

The girth of a graph G is the length of a shortest cycle in G. We denote by ∆ the maximum degree of a graph.
Perhaps the most challenging question for strong edge-colouring is the following conjecture:

Conjecture 1 (Erdős and Nešetřil [5]). For every graph G, χ ′
s(G) ≤

5
4∆

2 for ∆ even and 1
4 (5∆

2
− 2∆ + 1) for ∆ odd.

Andersen [1] and Horák et al. [8] showed this conjecture for the case when ∆ = 3. When ∆ is large enough, Molloy and
Reed showed that χ ′

s(G) ≤ 1.998∆2 [11].
In this note, we study the strong chromatic index of planar graphs. Thework in this area startedwith the paper of Faudree

et al. [6], who proved the following theorem.

Theorem 2 (Faudree et al. [6]). If G is a planar graph, then χ ′
s(G) ≤ 4∆ + 4, for ∆ ≥ 3.

The proof of Theorem 2 uses the Four Colour Theorem. The authors also provided a construction of planar graphs of girth 4
which satisfies χ ′

s(G) = 4∆ − 4. Hence, the bound of Theorem 2 is optimal up to an additive constant.
The same authors also conjectured that for ∆ = 3 the bound can be improved.
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Conjecture 3 (Faudree et al. [6]). If G is a planar subcubic graph then χ ′
s(G) ≤ 9.

Hocquard et al. obtained the following weakening of Conjecture 3.

Theorem 4 (Hocquard et al. [7]). If G is a planar graph with ∆ ≤ 3 containing neither induced 4-cycles, nor induced 5-cycles,
then χ ′

s(G) ≤ 9.

An interesting question is to see how the strong chromatic index behaves for sparse planar graphs. For instance, when
the girth is large enough the strong chromatic index decreases to the near optimal lower bound, as showed in the following
theorems:

Theorem 5 (Borodin and Ivanova [2]). If G is a planar graph with maximum degree ∆ ≥ 3 and girth g ≥ 40⌊∆

2 ⌋, then χ ′
s(G) ≤

2∆ − 1.

Recently this result was improved for ∆ ≥ 6:

Theorem 6 (Chang et al. [3]). If G is a planar graphwithmaximumdegree∆ ≥ 4 and girth g ≥ 10∆+46, thenχ ′
s(G) ≤ 2∆−1.

For smaller values of the girth, Hudák et al. [9] improved the bound in Theorem 2.

Theorem 7 (Hudák et al. [9]). If G is a planar graph with girth g ≥ 6, then χ ′
s(G) ≤ 3∆ + 6.

Our main result in this paper improves the upper bound in Theorem 7. In particular, we show the following.

Theorem 8. If G is a planar graph with girth g ≥ 6, then χ ′
s(G) ≤ 3∆ + 1.

Moreover, in Section 3, by a more careful analysis of the proof of Theorem 2 given in [6] and by using some results on
proper edge-colouring, we obtain the following strengthening.

Theorem 9. Let G be a planar graph with maximum degree ∆ and girth g. If G satisfies one of the following conditions below,
then χ ′

s(G) ≤ 4∆
• ∆ ≥ 7,
• ∆ ≥ 5 and g ≥ 4,
• g ≥ 5.

Before proving our results we introduce some notation.
Notation. Let G be a graph. Let d(v) denote the degree of a vertex v in G. A vertex of degree k is called a k-vertex. A k+-vertex
(respectively, k−-vertex) is a vertex of degree at least k (respectively, at most k). A kl-vertex is a k-vertex adjacent to exactly
l 2-vertices. A bad 2-vertex is a 2-vertex adjacent to another 2-vertex. When speaking about a vertex as a neighbour, same
notations apply just by replacing the word ‘‘vertex’’ with ‘‘neighbour’’. Two edges are at distance 1 if they share one of their
ends and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them. We define
N2[uv] as the set of edges at distance at most 2 from the edge uv and N2(uv) = N2[uv] − uv. Given an edge-colouring of
G, we denote by SC(N2(uv)) (SC(N2[uv]) respectively) the set of colours used by edges in N2(uv) (N2[uv] respectively). We
denote by N(v) the neighbourhood of the vertex v, i.e., the set of its adjacent vertices. Finally, we use [[n]] to denote the set
of integers {1, 2, . . . , n}.

2. Proof of Theorem 8

2.1. Structural properties

We proceed by contradiction. Let H be a counterexample to the theorem that minimizes |E(H)| + |V (H)|. By minimality
of H we can assume that it is connected and that by Theorem 4 it has ∆(H) ≥ 4.

Claim 1. H satisfies the following properties:
1. H does not contain a 1-vertex adjacent to a 4−-vertex.
2. H does not contain a 2-vertex adjacent to two 3−-vertices.
3. H does not contain a 2-vertex adjacent to a 3−-vertex and either a 42-vertex or a 43-vertex.
4. H does not contain a 2-vertex adjacent to a 43-vertex and to a 42-vertex.
5. If k ≥ 4, then H does not contain a k-vertex adjacent to k − 2 1-vertices; if the k-vertex is adjacent to k − 3 1-vertices, then

it has no other 2−-neighbour.
6. If k ≥ 4, then H does not contain a k-vertex adjacent to k 2−-vertices.
7. If k ≥ 5, then H does not contain a k-vertex u with N(u) = {u1, u2, . . . , uk−1, x}, such that each ui with i ∈ [[k − 1]] is a

2−-vertex and u1 is either a 1-vertex or a 2-vertex adjacent to either a 3−-vertex or a 43-vertex.
8. If k ≥ 5, then H does not contain a k-vertex adjacent to k − 2 vertices of degree 2, u1, . . . , uk−2, such that for i ∈ [[k − 3]],

each ui is adjacent to either a 3−-vertex or a 43-vertex.
9. If k ≥ 5 and 1 ≤ α ≤ k−4, then H does not contain a k-vertex adjacent to α 1-vertices and to k−2−α vertices of degree 2,

u1, . . . , uk−2−α , such that for i ∈ [[k − 3 − α]] each ui is adjacent to either a 3−-vertex or a 43-vertex.
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