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1. Introduction

Fasciagraphs and rotagraphs are graphs with a particular repetitive structure: They consist in a linear or circular sequence
of copies of the same undirected graph, each copy being connected to the next one according to a fixed scheme.

An optimization problem in a graph consists often in the search of subsets of edges and/or vertices satisfying some
property and optimizing a weight function. The case of the “minimum dominating set problem” will be used throughout
this paper as an example. Our goal here is to determine when the repetitive structure of fasciagraphs and rotagraphs may
be used to solve efficiently optimization problems on them. For this purpose we will need a characterization of “partial
solutions”, and a way to combine them in order to obtain a global solution.

In a previous paper [5], we addressed decision problems on fasciagraphs and rotagraphs. The present paper deals
with general optimization problems, and therefore extends the theoretical framework developed in [5]. We show that,
on fasciagraphs and rotagraphs, one can efficiently solve any combinatorial optimization problem that satisfies some well
defined conditions. In this sense, our results generalize and improve those of KlavZar and Vesel [17], who developed a
theoretical framework which is more restrictive than - and included in - ours. Taking advantage of the regular structure,
we state conditions under which our algorithm computes in constant time a closed formula which allows to calculate the
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Fig. 1. Example of a mixed graph M.

optimal solution for all fasciagraphs and rotagraphs based on the same pattern. This can be seen as a generalization of the
so-called “power method”, described and developed in [24] to address domination problems, or of the distance-related
invariants described in [15].

Many results of the literature dealing with dominating sets in grid-like structures rely on dynamic programming [1,11,
18,20,24-26]. These results have been adapted for other combinatorial problems [7,9,13,14,16,17,23,27]. The framework
developed in this paper provides a general argument proving that a large class of optimization problems can be efficiently
solved by dynamic programming when restricted to fasciagraphs and rotagraphs. We moreover provide an explicit generic
algorithm. Hence, our results unify all the above-mentioned papers, in the sense that the efficiency of dynamic programming
for each of these problems is a simple consequence of our results.

In Section 2 we provide the definitions that we use in the sequel, in particular those of fasciagraphs and rotagraphs.
Section 3 is dedicated to the case of rotagraphs, which is the easiest to describe thanks to the cyclicity of the structure
(recall that rotagraphs generalize toroidal grids). This section contains the main ideas and results of the paper. The case of
fasciagraphs is very similar to the one of rotagraphs, but requires some additional technical details. This case is indeed a little
bit more complicated to describe, due to the “side effects” that we have to deal with. This case has been addressed separately
in Section 4. In Sections 3.1 and 4.1 we recall the definitions of pseudo-local properties that were given in [5]. The notion
of modular weight function is introduced in Sections 3.2 and 4.2. These definitions are important since the combinatorial
problems that we are able to address are those corresponding to pseudo-local properties together with modular weight
functions. We provide additional remarks and comments in Section 5, and the conclusion is then in Section 6.

2. Definitions and useful results
2.1. Graphs

A mixed graph M is a triple (V, E, A), where V is a set of elements called vertices, E is a set of 2-elements subsets of V
called edges and A is a set of ordered pairs of elements of V called arcs. An arc (u, u) is called a loop. We denote an edge
{u, v} by uv or vu (see Fig. 1). Given a mixed graph M, the sets of vertices, edges and arcs of M will be denoted respectively
by V(M), E(M) and A(M). _

A directed graph is a mixed graph G = (V, E, A) where E = (J; we denote it by G = (V, A). An undirected graph is a mixed
graph G = (V, E, A) where A = (J; we denote it by G = (V, E). In the following, the word “graph” will refer to an undirected
graph, unless other specification. . _

Let k be a positive integer and G = (V, A) be a directed graph. A path P of cardinality k of G, also called a k-path, is a

sequence vy, ..., Uk Of (not necessarily distinct) vertices such that (v;, viy1) € Aforalli € {1, ..., k}. We then say that P
is a path from vq to vg41.
A circuit C of cardinality k, also denoted k-circuit, of a directed graph G = (V, A) (k > 1),is a path vy, ..., vg41 such that

v1 = v41. The cardinality of a path (or a circuit) Q is denoted by |Q |.

Notice that what we call “path” (resp. “circuit”) in this paper is often named “walk” (resp. “closed walk”) in the literature.

A path or a circuit is said to be elementary if it does not contain more than once the same vertex (except for the first and
last vertex in the case of circuits).

Given two paths P = vy, v, ..., g1 and Q = uq, Uy, .. ., Uj4q such that vg, 1 = uy, the concatenation of P and Q is the
(k + I)-path, denoted P + Q, which is equal to vy, v, .. s Ukt = Up, Ugy o Upp

A strongly connected component of a directed graph G is a maximal subgraphﬁof G in which there exists a path from any
vertex to any other vertex. A strongly connected component of a directed graph G is said to be trivial if it contains only one
vertex and no arc.
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