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a b s t r a c t

Given a weighted undirected graph G and a nonnegative integer k, the maximum k-star
colorable subgraph problem consists of finding an induced subgraph of G which has
maximum weight and can be star colored with at most k colors; a star coloring does not
color adjacent nodes with the same color and avoids coloring any 4-path with exactly
two colors. In this article, we investigate the polyhedral properties of this problem. In
particular, we characterize cases in which the inequalities that appear in a natural integer
programming formulation define facets. Moreover, we identify graph classes for which
these base inequalities give a complete linear description. We then study path graphs in
more detail and provide a complete linear description for an alternative polytope for k = 2.
Finally, we derive complete balanced bipartite subgraph inequalities and present some
computational results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For an undirected graph G = (V , E), a coloring of G is an assignment of colors to the nodes of G such that no two adjacent
nodes receive the same color. A star coloring of G is a coloring such that no four consecutive nodes on a path are coloredwith
exactly two colors. Star colorings were introduced by Grünbaum [15] and have applications in the computation of sparse
Hessians, see, e.g., Coleman and Moré [7] and Section 2 for more details.

The goal of this paper is to investigate the polyhedral properties of star colorings; to the best of our knowledge this has
not been considered before. We consider a positive integer k and the corresponding polytope P⋆

k(G), which is the convex
hull of incidence vectors of star colorings of subgraphs of G using at most k colors.

An integer programming (IP) formulation of star colorings, with binary variables indicating whether a node receives
a given color, contains three nontrivial families of inequalities: packing inequalities, indicating that a node receives at
most one color, edge inequalities forbidding adjacent nodes with the same color, and star inequalities ensuring the star
conditionmentioned above.We show that packing inequalities always define facets if k ≥ 2. Edge inequalities are (possibly)
dominated by clique inequalities, which define facets if and only if the cliques are maximal. This is similar to the stable set
polytope, see, e.g., Chvátal [5] and Padberg [30]. A characterization for star inequalities to define facets is more complex,
depending on the structure of the neighborhood of the path.

Afterwards, we focus on complete linear descriptions of P⋆
k(G). We first characterize graphs for which the above three

families of inequalities and nonnegativity constraints completely describe the polytope. It turns out that the star inequalities
for the corresponding graphs are in fact redundant. This highlights the surprising fact that the mentioned inequalities never
suffice to describe the polytope for cases in which the star coloring constraints are ‘‘active’’ (non-redundant).
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Fig. 1. Example for the computation of sparse Hessians.

A base case for which the investigation of the structure of the polytope P⋆
k(G) seems to be particularly interesting are

path graphs. However, it turns out that P⋆
k(G) is rather complicated for k = 2 even for path graphs. We therefore consider

a projected formulation that indicates whether a node is colored or not, but does not distinguish the two colors. We then
obtain a complete description using only trivial inequalities plus ‘‘projected star inequalities’’; in fact, we prove that this
description is totally dual integral (TDI). The projection, however, is only valid for k = 2.

Furthermore, we investigate a generalization of star inequalities to complete bipartite graphs. We prove that the
corresponding inequalities define facets of P⋆

k(G), if G is a balanced complete bipartite graph. These inequalities are then
used in an implementation, for which we present computational experiments.

As mentioned above, one application of the star coloring problem is the efficient computation of sparse Hessians via
automatic differentiation, see, e.g., Coleman and Moré [7], Gebremedhin et al. [12–14]. However, star colorings have been
investigated in the literaturemainly with respect to lower and upper bounds, i.e., the computation of star colorings with the
least number of used colors (star chromatic number) and lower bounds on the number of colors needed, see, e.g., Albertson
et al. [2], Fertin et al. [9], and Lyons [25]. Lyons [25] identifies graph classes for which the number of colors needed coincides
with the number of colors in an ordinary coloring. Moreover, Lyons [26] investigates classes of graphs for which the star
chromatic number equals the so-called acyclic chromatic number (acyclic colorings also arise in the context of sparse
Hessians).

The polyhedral properties of ordinary colorings have been investigated, for instance, in Mendez-Díaz and Zabala [28,27]
and Coll et al. [8]. The problem of finding subgraphs of a given graph that can be colored with a specific number of colors is
studied by Narasimhan [29]. A polyhedral analysis of this problem and an investigation of its algorithmic treatment as well
as the handling of color and graph symmetries can be found in [19,20].

The structure of this paper is as follows: In Section 2 we describe the application of star colorings in the computation
of sparse Hessians, and in Section 3 we introduce some basic notation. A polyhedral description for the maximum k-star
colorable subgraph problem is developed in Section 4, and in Section 5 we provide graph classes for that we can find a
complete linear description. In Section 6 we derive a projected polyhedral model for k = 2, and we study polyhedral
properties of the new model and connections to the previously defined polytope. Section 7 applies the results from the
previous section to path graphs, whereas Section 8 provides further facet inducing inequalities for P⋆

k(G). Computational
results on the maximum k-star colorable subgraph problem are presented in Section 9, and we conclude this paper in
Section 10.

2. Computation of sparse Hessians

Since the above mentioned application to the computation of sparse Hessians is important, we will briefly describe the
connection to star colorings in this section. The presentation is based on Gebremedhin et al. [12, Section 4].

Suppose we are given a twice continuously differentiable function f : Rn
→ R and the goal is to efficiently compute its

Hessian H , e.g., in a (globalized) Newton or SQP method (see, e.g., Bonnans et al. [4]). Consider, for example, a Hessian with
the sparsity pattern as shown in Fig. 1(a). The first two components of the directional derivative of ∇f along e1 + e4 equal
the nonzeros of the first column of H , and its last two components are the nonzero entries in the fourth column of H; here,
ei is the ith unit vector. This is true since the nonzeros of the first and fourth column are disjoint. The final Hessian can then
be completed by taking the derivative of∇f along e2 and e3, respectively. In contrast, the naïve approachwould require four
derivatives.

This argument can be easily extended to the general case by partitioning the columns such that for each row there is at
most one column in each part which has a nonzero in this row. Then for each part π , the components of the derivative of∇f
along the sum of unit vectors for each index in π give the nonzeros of the corresponding columns in H . The efficiency of
this scheme increases if the number of parts decreases. Furthermore, we can obtain a speed-up by exploiting the symmetry
of H , since it suffices to find a partition of the columns of H such that we are able to recover Hij or Hji.

Coleman and Moré [7] show that a column partition of H (assuming that the diagonal entries are nonzero) allow such a
symmetric reconstruction if and only if it induces a star coloring of the adjacency graph of H . The adjacency graph is defined
by introducing a node for each column of H; there is an edge between two distinct nodes i and j if and only if Hij = Hji ≠ 0.

Consider again the example in Fig. 1. Taking the derivative d of ∇f along e1 + e3 allows to compute H11, H33, and H43,
but only H21 + H23. If we take the derivative along e2 + e4, we cannot recover H32 and H34. Thus, taking just two derivatives
(parts) does not suffice to compute H , since columns {1, 3} would receive one color and {2, 4} a second one. Hence, the
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