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a b s t r a c t

In this paper we analyse the generalization performance of a type of binary classifier
defined on the unit cube. This classifier combines some of the aspects of the standard
methods that have been used in the logical analysis of data (LAD) and geometric classifiers,
with a nearest-neighbor paradigm. We assess the predictive performance of the new
classifier in learning from a sample, obtaining generalization error bounds that improve
as a measure of ‘robustness’ of the classifier on the training sample increases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study a method of classifying points of [0, 1]n into two classes. The classifiers we use combine the use
of ‘boxes’ with a nearest-neighbor approach and for this reason we describe it as a hybrid classifier. Both classification by
boxes and nearest-neighbor classification have been widely used. For instance, the use of boxes is integral to many of the
standard methods used in the logical analysis of data (LAD); see [8,9], for instance.

The primary purpose of this paper is to quantify the performance of the hybrid classifiers by bounding their generalization
error. In doing so, we obtain bounds that depend on a measure of how ‘robust’ the classification is on the training sample.
In using real-valued functions to form the basis of the classification, we can also attach some degree of ‘confidence’ or
‘definitiveness’ to the resulting classifications, and this could be of some practical use.

In Section 2,we give somebackground byway ofmotivation. Chiefly, this is a description of someof the standardmethods
used in the logical analysis of data, especially as they apply to data in which the data points are not necessarily binary, but
have real-valued components. In this context, unions of boxes are used as a key means of classification. (It should be noted
that classification by unions of boxes has been more widely studied, not just in the context of LAD; see [10] for instance.)

Section 3 describes a type of ‘hybrid’ classifier which incorporates some of the features of the LAD (and other) techniques
in that it uses unions of boxes. However, the classifiers combine this with a nearest-neighbor paradigm for classifying some
regions of the domain. In this section, we define the classifiers, give an example, and discuss the rationale for this method
of classification.

Section 4 provides the main theoretical results, giving bounds on the predictive performance (or generalization error)
of the classifiers. The bounds we obtain are better if the classifier achieves ‘definitively’ correct classification of the sample
points.
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2. Classification using unions of boxes

In standard logical analysis of data (LAD) for binary data, we have some collection of labeled observations (or data-points,
or training examples) (xi, bi), for i = 1, 2, . . . ,m, wherem is known as the sample size. The observations are the xi and their
labels are the bi. The xi ∈ {0, 1}n for which (xi, 1) appears among the observations are said to be the positive observations;
and those forwhich (xi, 0) appears are the negative observations. We denote the sets of positive and negative observations by
D+ andD− respectively, and the set of allm observations byD. The primary aim is to find some function h : {0, 1}n → {0, 1},
a hypothesis or classifier, that describes the classifications of the known observations well and therefore, as a result, would
act as a reliable guide to how future, as yet unseen, elements of {0, 1}n ought to be classified. This is, indeed, a central
issue generally in machine learning. The approach taken in LAD methods involves the use of Boolean functions constructed
in precise algorithmic ways from the observations. In the standard LAD method for binary data [11], a disjunctive normal
form Boolean function (a DNF) is produced. The terms of this DNF are called positive patterns. A (pure) positive pattern is a
conjunction of literals which is true on at least one positive observation (inwhich casewe say that the observation is covered
by the pattern) but which is not true on any negative observation. The classifier is then taken to be the disjunction of a set
of positive patterns. A more general technique combines the use of positive patterns with negative patterns, conjunctions
which cover some negative observations. Points of {0, 1}n are then classified as follows: x ∈ {0, 1}n is assigned value 1 if
it is covered by at least one positive pattern, but no negative patterns; and it is assigned value 0 if it is covered by at least
one negative pattern, but no positive patterns. If a point x is covered by both types of pattern (which might well be the case,
even if we have been careful to ensure that the observations themselves have only been covered by patterns of one type)
then its classification is often determined by using a discriminant, which takes into account (perhaps in a weighted way) the
number of positive and the number of negative patterns covering it.

These standard LAD techniques apply when the data is binary. However, many applications involve numerical data, in
whichD ⊆ [0, 1]n×{0, 1}. The LADmethods have been extended to deal with such cases; see [9], for instance. The approach
is first to binarize the data, so that observations x ∈ [0, 1]n are converted into binary observations x∗

⊆ {0, 1}d, where,
generally, d ≥ n. The standard way to do so is to use cutpoints for each attribute (that is, for each of the n geometrical
dimensions). For each coordinate (or dimension) j = 1, 2, . . . , n, let u(j)
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be, in increasing order, all the distinct
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for i = 1, . . . , kj − 1. For j = 1, 2, . . . , n and i = 1, 2, . . . kj − 1, and for each x ∈ D, we define b(j)
i (x) to be 1 if and only if

xj ≥ β
(j)
i . Let x∗ be the resulting binary vector
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where d =
n

j=1 kj. The set D
∗

= {x∗

i : 1 ≤ i ≤ m} is then a binarized version of the set D of observations, and standard LAD
techniques can be applied.

There are a number of ways, however, in which the binarization just described could be non-optimal and, usually, some
cutpoints can be eliminated; see the approaches taken in [8,9]. In [5], variants on these approaches are discussed, the aim
being to find ‘robust’ cutpoints; that is, cutpoints which define hyperplanes geometrically at least at a certain distance from
the data points. Suppose, then, that a (reduced) set C (j) of Kj cutpoints (a subset of the corresponding β

(j)
i ) is selected for

coordinate j, and suppose the members of C (j) are

a(j)
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Let d =
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j=1 Kj. An element x ∈ [0, 1]n will be ‘binarized’ as x∗
∈ {0, 1}d where x∗ is
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where b(j)
i (x) = 1 if and only if xj ≥ a(j)

i . Let the Boolean literal u(j)
i be given by I[xj ≥ a(j)

i ], where I[P] has value 1 if P is true
and value 0 otherwise. Then a positive pattern is a conjunction of some of the Boolean variables u(j)

i . By definition of u(j)
i ,
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i′ = 1 for i > i′, and any j. So a typical positive pattern can be written in terms of these Boolean variables
as

n
j=1
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where sj > rj. (Here, ∧ denotes the Boolean conjunction, the ‘and’ operator.) Geometrically, this positive pattern is the
indicator function of the ‘box’
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