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a b s t r a c t

We show that any 2-factor of a cubic graph can be extended to a maximum 3-edge-
colorable subgraph. We also show that the sum of sizes of maximum 2- and 3-edge-
colorable subgraphs of a cubic graph is at least twice of its number of vertices. Finally,
for a cubic graph G, consider the pairs of edge-disjoint matchings whose union consists
of as many edges as possible. Let H be the largest matching among such pairs. Let M be a
maximummatching of G. We show that 9/8 is a tight upper bound for |M|/|H|.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite undirected graphs that do not contain loops. Graphs may contain multiple edges. For a graph G and a
positive integer k define

Bk(G) = {{H1, . . . ,Hk} : H1, . . . ,Hk are pairwise edge-disjoint matchings of G},

and let

νk(G) = max{|H1| + · · · + |Hk| : {H1, . . . ,Hk} ∈ Bk(G)}.

A subgraph H of G is called maximum k-edge-colorable, if it is k-edge-colorable and contains exactly νk(G) edges. If G is
edge-colored, then for a vertex v of G let C(v) denote the set of colors of the edges of G that are incident to the vertex v.

For a graph G define:

αk(G) = max{|H1| , . . . , |Hk| : {H1, . . . ,Hk} ∈ Bk(G) and |H1| + · · · + |Hk| = νk(G)}.

If ν(G) denotes the cardinality of the largest matching of G, then it is clear that αk(G) ≤ ν(G) for all G and k. Moreover,
νk(G) = |E(G)| for all k ≥ χ ′(G), where χ ′(G) is the chromatic index of G. Also note that ν1(G) and α1(G) are equal to ν(G).

Recall that a matching of G is maximum, if it contains ν(G) edges, and is maximal if it is not a subset of a larger matching.
In contrast with the theory of 2-matchings, where every graph G admits a maximum 2-matching that includes a maximum
matching [4], there are graphs that do not have amaximum 2-edge-colorable subgraph that includes amaximummatching.
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The following is the best result that can be stated about the ratio ν(G)/α2(G) for any simple graph G (see [7]):

1 ≤ ν(G)/α2(G) ≤ 5/4.

A very deep characterization of simple graphs G satisfying ν(G)/α2(G) = 5/4 is given in [11].
Also note that by Mkrtchyan’s result [5], reformulated as in [3], if G is a matching covered tree, then α2(G) = ν(G). Note

that a graph is said to be matching covered (see [6]), if each of its edges belongs to a maximummatching (not necessarily a
perfect matching as it is usually defined, see e.g. [4]).

In this paper, we show that any 1- and 2-factor of a cubic graph can be extended to a maximum 3-edge-colorable
subgraph. We also show that ν2(G) + ν3(G) ≥ 2|V (G)| for any cubic graph G. Finally, we show that 9/8 is a tight upper
bound for the ratio ν(G)/α2(G) in the class of cubic graphs G.

Terms and concepts that we do not define can be found in [4,12].

2. The main results

We begin with a theorem that describes the structure of the edges that do not belong to a maximum 3-edge-colorable
subgraph of a cubic graph.

Theorem 1. Let H be a maximum 3-edge-colorable subgraph of a cubic graph G. Then E(G) \ E(H) is a matching.

Proof. To complete the proof of the theorem, we need to verify the absence of adjacent edges in G \ E(H).
Suppose that {u0, u1}, {u1, u2} ∈ E(G) \ E(H). We need to consider two cases:
Case 1: u0 = u2, that is, {u0, u1} is a multiple edge. Note that |C(u0)| ≤ 1, |C(u1)| ≤ 1, thus there is α ∈ {1, 2, 3}

with α ∉ C(u0) ∪ C(u1). Now, if we color one of edges connecting u0 and u1 with color α, then we would get a proper
3-edge-coloring of the subgraph H ∪ {{u0, u1}}, contradicting the maximality of H .

Case 2: u0 ≠ u2. Note that |C(u0)| ≤ 2, |C(u1)| ≤ 1, |C(u2)| ≤ 2. It is easy to see that the maximality of H implies that

C(u0) ∪ C(u1) = {1, 2, 3} and C(u1) ∪ C(u2) = {1, 2, 3},

thus |C(u0)| = 2, |C(u1)| = 1, |C(u2)| = 2 and C(u0) = C(u2). Suppose that C(u0) = C(u2) = {α, β} and C(u1) = {γ }.
Consider the maximal α − γ alternating paths P0, P1, P2, starting from vertices u0, u1, u2, respectively. Note that there is i ∈

{0, 2} such that u1 ∉ V (Pi). Now, shift the colors on the path Pi to obtain a new coloring of the maximum 3-edge-colorable
subgraph H , where the color α is absent in both of vertices ui and u1. Now, if we color the edge {u1, ui}with color α, then we
would get a proper 3-edge-coloring of the subgraphH∪{{u1, ui}}, contradicting themaximality ofH . The proof of Theorem1
is completed. �

It is not always possible to extend a 1-factor (and maximum matchings as well [1]) to a maximum 2-edge-colorable
subgraph of a cubic graph. Nevertheless, the following is true:

Theorem 2. Any 1-factor of a cubic graph G can be extended to a maximum 3-edge-colorable subgraph of G.

Proof. For a 1-factor F of G, choose a maximum 3-edge-colorable subgraph H of G with |E(F) ∩ E(H)| is maximum.
Let us show that E(F) ⊆ E(H). On the opposite assumption, consider an edge e = {u, v} ∈ E(F) \ E(H) and assume that

H is properly colored with colors {1, 2, 3}. Due to Theorem 1, the edges adjacent to e belong to H . Note that the maximality
of H implies that

|C(u) ∩ C(v)| = 1 and C(u) ∪ C(v) = {1, 2, 3}.

Choose α ∈ C(u) \ C(v). Consider the subgraph H ′
= (H \ {e′

})∪ {e}, where e′ is the edge that is incident to u and is colored
by α. Note that H ′ is a maximum 3-edge-colorable subgraph of Gwith

|E(F) ∩ E(H)| < |E(F) ∩ E(H ′)|

contradicting the choice of H . The proof of Theorem 2 is completed. �

Next, we prove a result which claims that the uncolored edges with respect to a maximum 3-edge-colorable subgraph of
G always can be ‘‘left’’ in a given 1-factor, or, equivalently, any 2-factor of a cubic graphG can also be extended to amaximum
3-edge-colorable subgraph of G.

Theorem 3. Let F be any 1-factor of a cubic graph G, and let F̄ be the complementary 2-factor of F . Then there is a maximum
3-edge-colorable subgraph H of G, such that:

(a) E(H) ∪ E(F) = E(G);
(b) E(F̄) ⊆ E(H).

Proof. Note that (b) follows from (a), thus we will only prove (a).
For a given 1-factor F of a cubic graph G, consider a maximum 3-edge-colorable subgraph H of G such that |E(F) ∩ E(H)|

is minimum.
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