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a b s t r a c t

Sharp upper bounds on the average eccentricity of a connected graph of given order in
terms of its independence number, chromatic number, domination number or connected
domination number are given. Our results settle two conjectures of the computer program
AutoGraphiX (Aouchiche et al., 2005).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a connected graph of order n. The distance dG(u, v) between vertices u and v in G is the length of a
shortest u–v path in G. The eccentricity ecG(v) of a vertex v of G is the distance from v to a vertex furthest away from v. The
average eccentricity avec(G) of G is defined as avec(G) =

1
n


x∈V ecG(x).

In this paperwe give sharp upper bounds on the average eccentricity for graphs of given order and independence number,
domination number, connected domination number or chromatic number. We prove, as corollaries to our results, two
conjectures produced by the computer program AutoGraphiX.

The average eccentricity was introduced by Buckley and Harary [5] as the eccentric mean, and further studied in [10],
where bounds in terms of order, radius, diameter andminimum degree were given, and formore recent results see [13]. The
average eccentricity has also been the subject of a number of conjectures produced by the computer program AutoGraphiX.
For information on the program AutoGraphiX see [2, 4, 6]; and for a list of its conjectures see [1, 11].

The average eccentricity is related to the average distance, defined as the average of the distances between all pairs
of vertices. Many extremal graphs that maximise the average distance for a given parameter set also maximise the average
eccentricity, and the results in this paper are a case in point. The average distance is also related to somenewgraph invariants
studied in chemical graph theory, specifically to the eccentric connectivity index (see for example [10, 13] and references
therein) and the eccentric distance sum (see for example [18]).

All graphs in this paper are finite and connected. Our notation follows [5]. In particularwedenote the order, independence
number, chromatic number, domination number and connected domination number of a graph G by n, α, χ, γ and γc . We
denote the sum


x∈V ecG(x) by ζ (G), so avec(G) =

ζ (G)

n . In most statements and proofs we use ζ (G), rather than avec(G),
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in order to avoid unpleasant fractions. If x and y are vertices of a connected graph, then P(x, y) denotes a shortest path
between them.

2. Preliminary results

We begin with a few preparatory results which will be needed for the proofs of our main results.
The first proposition derives from the fact that the path maximises average eccentricity amongst all connected graphs

of a given order, which was proved in [10]. The second proposition, a sharp upper bound on the average eccentricity of a
tree of given order and diameter, is a refinement of the first. The third result is a classical result on eccentric sequences by
Lesniak [14].

Proposition 2.1 ([10]). Let G be a connected graph of order n. Then

ζ (G) ≤


3
4
n2

−
1
2
n


,

with equality if and only if G is a path. �

Lemma 2.1. Let T be a tree and let u, v be two vertices at distance diam(T ). Then

ec(x) = max{d(x, u), d(x, v)}

for all x ∈ V (T ).

Proof. Suppose not. Then there exist vertices x and y with d(x, y) > max{d(x, u), d(x, v)}.
Case 1: P(u, v) and P(x, y) have at most one vertex in common.
Let w and z be vertices on P(u, v) and P(x, y), respectively, at minimum distance, so w = z if and only if the two paths

have a vertex in common. By our assumption we have d(z, u), d(z, v) < d(z, y), and so d(w, y) > d(w, u), d(w, v). Since a
shortest (u, y)-path contains w, we obtain the contradiction d(u, y) = d(u, w) + d(w, y) > d(u, w) + d(w, v) = diam(T ).

Case 2: P(u, v) and P(x, y) share more than one vertex.
Then the twopaths have a path segment P(w, z) in common.Wemay assume thatw is closer tou on P(u, v) and z is closer

to v. As above, d(x, y) > d(x, v) implies d(z, y) > d(z, v), and so we obtain the contradiction d(u, y) = d(u, z) + d(z, y) >
d(u, z) + d(z, v) = d(u, v) = diam(T ). �

Proposition 2.2. Let T be a tree of order n and diameter d. Then

ζ (T ) ≤


dn −

1
4
d2 +

1
4


.

Proof. Let P = v0, v1, . . . , vd be a diametral path. By Lemma 2.1 we have ec(vi) = d− i for i ≤
1
2d and ec(vi) = i for i > 1

2d.
Summation yields


x∈V (P) ec(x) ≤ ⌊

3
4 (d + 1)2 −

1
2 (d + 1)⌋. Hence,

ζ (T ) =


x∈V (P)

ec(x) +


x∈V (T )−V (P)

ec(x)

≤


3
4
(d + 1)2 −

1
2
(d + 1)


+ (n − d − 1)d

=


dn −

1
4
d2 +

1
4


,

as desired. �

Theorem 2.1 ([14]). Let G be a connected graph of order n. Then for every integer k with rad(G) < k < diam(G) there exist at
least two vertices in G of eccentricity k. �

Lemma 2.2. Let G be a connected graph of order n, and let T be a connected dominating subgraph of G with vertex set S.
Then

ζ (G) ≤ ζ (T ) + |S| +


|V (G)| − |S|


diam(T ) + 2


.

Proof. Since every vertex of G not contained in S is adjacent to a vertex in S, we have ecG(x) ≤ ecT (x) + 1 for all x ∈ S.
Moreover, since every two vertices of G are connected by a path whose internal vertices are in S, we have ecG(x) ≤
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