Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bondage number of grid graphs

Magda Dettlaff^a, Magdalena Lemańska^a, Ismael G. Yero^{b,*}

^a Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12 80-233 Gdańsk, Poland

^b Departamento de Matemáticas, Escuela Politécnica Superior de Algeciras, Universidad de Cádiz, Av. Ramón Puyol, s/n, 11202 Algeciras, Spain

ARTICLE INFO

Article history: Received 16 April 2012 Received in revised form 5 September 2013 Accepted 25 November 2013 Available online 9 December 2013

Keywords: Domination Bondage number Strong product graphs Direct product graphs

1. Introduction

Let G = (V, E) be a connected undirected graph with vertex set V and edge set E. Given two vertices $u, v \in V$, the notation $u \sim v$ means that u and v are adjacent. The *neighborhood* of a vertex $v \in V$ in G is the set $N_G(v) = \{u \in V : u \sim v\}$. For a set $X \subseteq V$, the open neighborhood $N_G(X)$ is defined to be $\bigcup_{v \in X} N_G(v)$ and the closed neighborhood $N_G(X) \cup X$.

The degree $d_G(v)$ of a vertex v is the number of edges incident to v, $d_G(v) = |N_G(v)|$. The minimum and maximum degrees among all vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The distance $d_G(u, v) = d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest (u - v) path in G.

A set $D \subseteq V$ is a *dominating set* of *G* if $N_G[D] = V$. The *domination number* of *G*, denoted $\gamma(G)$, is the minimum cardinality of a dominating set in *G*. Any dominating set of cardinality $\gamma(G)$ is called a γ -set. For unexplained terms and symbols see [7]. The *bondage number* b(G) of a nonempty graph *G* with $E \neq \emptyset$ is the minimum cardinality among all sets of edges $E' \subseteq E$ for which $\gamma(G - E') > \gamma(G)$. The domination number of every spanning subgraph of a nonempty graph *G* is at least as great as $\gamma(G)$, hence the bondage number of a nonempty graph is well defined. Bondage number was introduced by Fink et al. [3] in 1990. However, the early research on the bondage number can be found in Bauer et al. [1]. In [1,3] it was shown that every tree has bondage number equal to 1 or 2. Hartnell and Rall [5] proved that for the cartesian product $G_n = K_n \Box K_n$, n > 1, we have $b(G_n) = \frac{3}{2}\Delta$. Teschner [14,13,12] also studied the bondage number; for instance, in [13] he showed that $b(G) \leq \frac{3}{2}\Delta(G)$ holds for any graph *G* satisfying $\gamma(G) \leq 3$. Moreover, the bondage number of planar graphs was described in [2,4,10]. Carlson and Develin [2] showed that the corona $G = H \circ K_1$ satisfies $b(G) = \delta(H) + 1$. In [9] Kang et al. proved for discrete torus $C_n \Box C_4$ that $b(C_n \Box C_4) = 4$ for any $n \geq 4$. Also, some relationships between the connectivity and the bondage number of graphs were studied in [11]. In [8], the exact values of bondage number of Cartesian product of two paths P_n and P_m have been determined for $m \leq 4$. For more results on bondage number of a graph we suggest the survey [15].

ABSTRACT

The bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.

© 2013 Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +34 956028061; fax: +34 977558512.

E-mail addresses: mdettlaff@mif.pg.gda.pl (M. Dettlaff), magda@mifgate.mif.pg.gda.pl (M. Lemańska), ismael.gonzalez@uca.es (I.G. Yero).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.11.020

The following two lemmas show general bounds for the bondage number of a graph.

Lemma 1 ([5]). If u and v are a pair of adjacent vertices of a graph G, then

 $b(G) \le d(u) + d(v) - 1 - |N(u) \cap N(v)|.$

Lemma 2 ([1,6]). If u and v are two vertices of a graph G such that $d(u, v) \le 2$, then

 $b(G) \le d(u) + d(v) - 1.$

2. Bondage number of $P_n \boxtimes P_m$

Let *G* and *H* be two graphs with the sets of vertices $V_1 = \{v_1, v_2, ..., v_n\}$ and $V_2 = \{u_1, u_2, ..., u_m\}$, respectively. The strong product of *G* and *H* is the graph $G \boxtimes H$ formed by the vertices $V = \{(v_i, u_j) : 1 \le i \le n, 1 \le j \le m\}$ and two vertices (v_i, u_j) and (v_k, u_l) are adjacent in $G \boxtimes H$ if and only if $(v_i = v_k \text{ and } u_j \sim u_l), (v_i \sim v_k \text{ and } u_j = u_l)$ or $(v_i \sim v_k \text{ and } u_j \sim u_l)$. In this section we will study the bondage number of the strong product of two paths P_n and P_m of order at least two. We begin by giving some observations and lemmas which will be useful into obtaining the bondage number of $P_n \boxtimes P_m$ for $n, m \ge 2$.

We will say that a graph *G* without isolated vertices satisfies the property \mathcal{P} if it has a dominating set of minimum cardinality $S = \{u_1, u_2, \ldots, u_k\}, k = \gamma(G)$, such that $N[u_i] \cap N[u_j] = \emptyset$ for every $i, j \in \{1, \ldots, k\}, i \neq j$. Now, let \mathfrak{F} be the class of all graphs satisfying property \mathcal{P} . Notice that for instance every path graph belongs to \mathfrak{F} .

Observation 1. Let $\{v_1, v_2, \ldots, v_n\}$ be the set of vertices of a path P_n of order n. Then

- (i) If n = 3t, then there is only one dominating set S of minimum cardinality in P_n ; it satisfies property \mathcal{P} and it is $S = \{v_2, v_5, \ldots, v_{n-1}\}$.
- (ii) If n = 3t + 1, then there is only one dominating set *S* of minimum cardinality in P_n satisfying property \mathcal{P} and it is $S = \{v_1, v_4, v_7, \ldots, v_{n-3}, v_n\}.$
- (iii) If n = 3t + 2, then there are only two dominating sets S and S' of minimum cardinality in P_n satisfying property \mathcal{P} and they are $S = \{v_2, v_5, \ldots, v_{n-3}, v_n\}$ and $S' = \{v_1, v_4, v_7, \ldots, v_{n-1}\}$.

The following result from [16] is useful into studying the bondage number of $P_n \boxtimes P_m$.

Lemma 3 ([16]). For any $n, m \ge 2$,

$$\gamma(P_n \boxtimes P_m) = \gamma(P_n)\gamma(P_m) = \left\lceil \frac{n}{3} \right\rceil \left\lceil \frac{m}{3} \right\rceil.$$

Theorem 4. For any $n, m \ge 2$,

 $1 \leq b(P_n \boxtimes P_m) \leq 5.$

Proof. Since $n, m \ge 2$, we have that there are always two adjacent vertices u, v in $P_n \boxtimes P_m$ such that $d(u) = 3, d(v) \le 5$ and $|N(u) \cap N(v)| = 2$. So, the result follows by Lemma 1.

Similarly to the case of Cartesian product, hereafter we will study the bondage number of $P_n \boxtimes P_m$ by making some cases.

Theorem 5. If (n = 3t and m = 3r) or (n = 3t and m = 3r + 2), then

$$b(P_n \boxtimes P_m) = 1.$$

Proof. Notice that if n = 3t and m = 3r, then by Observation 1(i) there exists only one dominating set of minimum cardinality in P_n and only one dominating set of minimum cardinality in P_m and they satisfy the property \mathcal{P} . Thus, there exists only one dominating set *S*, of minimum cardinality in $P_n \boxtimes P_m$; and it also satisfies the property \mathcal{P} . So, every vertex outside of *S* is dominated by only one vertex from *S*. Therefore, by deleting any edge e of $P_n \boxtimes P_m$ between a vertex of *S* and other vertex outside of *S*, we obtain that the domination number of $P_n \boxtimes P_m - \{e\}$ is greater than the domination number of $P_n \boxtimes P_m$.

On the other hand, let $V_1 = \{u_1, u_2, ..., u_n\}$ and $V_2 = \{v_1, v_2, ..., v_m\}$ be the set of vertices of P_n and P_m , respectively. Since n = 3t, by Observation 1(i), we have that there is only one dominating set of minimum cardinality in P_n and it is $S_1 = \{u_2, u_5, ..., u_{n-1}\}$. Moreover, since m = 3r + 2 we have that every dominating set S_2 of minimum cardinality in P_m satisfies either

- $v_1 \in S_2$ and $v_2, v_3 \notin S_2$,
- or $v_2 \in S_2$ and $v_1, v_3 \notin S_2$.

Download English Version:

https://daneshyari.com/en/article/418771

Download Persian Version:

https://daneshyari.com/article/418771

Daneshyari.com