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a b s t r a c t

Let G = (V (G), E(G)) be a graph. Determining theminimum and/ormaximum size (|E(G)|)
of graphs with some given parameters is a classic extremal problem in graph theory. For a
graph G and e = uv ∈ E(G), we denote d(e) = d(u) + d(v) − 2 the edge–degree of e. In
this paper, we obtain a lower bound for the minimum size of graphs with a given order n,
a given minimum degree δ and a given minimum edge–degree 2δ + k − 2. Moreover, we
characterize the extremal graphs for k = 0, 1, 2. As an application, we characterize some
kinds of minimum restricted edge connected graphs.

© 2013 Elsevier B.V. All rights reserved.

1. The size of graph with given minimum degree and minimum edge degree

Let G = (V (G), E(G)) be a graph. Unless stated otherwise, we use [2] for terminology and notations not defined here.
In particular, we call |E(G)| the size of G. For u ∈ V (G), the degree of u in G is denoted by dG(u), or simply d(u). We denote
δ(G) the minimum degree of G, Dt(G) (or simply, Dt ) the set of vertices of degree t in G, D≥t(G) (or simply, D≥t ) the set of
vertices of degrees at least t in G, respectively. Let dt = |Dt(G)|. For e = uv ∈ E(G), denote by d(e) = d(u) + d(v) − 2 the
edge–degree of e, and let ξ(G) = min{d(e) : e ∈ E(G)} (if e is a loop of G, then u = v). For v ∈ V (G) and A ⊆ V (G), we denote
NG(v) the set of the neighbors of v in G and NG(A) the set (


v∈V (A) NG(v)) \ V (A), respectively.

Determining the minimum and/or maximum size of graphs with some given parameters is a classic extremal problem
in graph theory, see [1]. In this paper, we consider the following problem:What is the minimum size of graphs with a given
order n, a givenminimumdegree δ and a givenminimumedge–degree 2δ+k−2?Weobtain a lower bound for theminimum
size of graphs with a given order n, a given minimum degree δ and a given minimum edge–degree 2δ + k − 2. Moreover,
we characterize the extremal graphs for k = 0, 1, 2. As an application, we characterize some kinds of minimum restricted
edge connected graphs.

In the following theorem, the graph considered may have loops (a loop is an edge with two same endpoints). For a graph
G and u ∈ V (G), let EG(u) be the set of edges incident with u in G. When the graph G is understood from the context, we
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write Eu for EG(u), δ and n for δ(G) and |V (G)|, respectively. Denote by Gn,δ,k a graph with order n, minimum degree δ, and
minimum edge–degree 2δ + k − 2, and let Gn,δ,k be the set of all Gn,δ,k’s.

Theorem 1.1. Let G be a graph with minimum degree δ ≥ 3, ξ(G) ≥ 2δ + k − 2. Then |E(G)| ≥
δ
2n +

δk
2(δ+k)dδ . Moreover,

equality holds if and only if dδ =
δ+k
2δ+kn and V (G) = Dδ ∪ N(Dδ).

Proof. Let N(G) = NG(Dδ) and T (G) = V \ (N ∪Dδ) (or simply, we use N and T for N(G) and T (G)). Note that k ≥ 0 and the
inequality holds if k = 0. Then we may assume that G is a graph with ξ(G) ≥ 2δ − 1, i.e. k ≥ 1. Thus, Dδ is an independent
set of G. The degrees of vertices in N are at least δ + k and the degrees of vertices in T are at least δ + 1. We consider the
size of G by distinguishing the following two cases.

If |N| > δ
δ+kdδ , we have
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By the assumption, we have |E(G)| ≥
δ
2n +

δk
2(δ+k)dδ since

|N|+|T |

2 ≥
δ

2(δ+k)dδ .
If |N| ≤
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δ+kdδ , we have
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By inequality (2), one can see that if |N| < δ
δ+kdδ , then |E(G)| > δ

2n +
δk

2(δ+k)dδ . Moreover, if the equality holds in
inequality (2), then |T | = 0. Note that |N| =

δ
δ+kdδ and |T | = 0 imply that dδ =

δ+k
2δ+kn. Thus, the equality holds if and only

if dδ =
δ+k
2δ+kn and |N| =

δ
2δ+kn. We complete the proof. �

We next consider the extremal graphs for k = 0, 1, 2. By Theorem 1.1, we have |E(Gn,δ,k)| ≥ ⌈
δ
2n⌉ if k = 0. The following

graph Hs,m ∈ Gn,δ,k such that |E(Hs,m)| = ⌈
δ
2n⌉.

For integers s, n, n ≥ s + 1, Harary [5] constructed classes of graphs Hs,n that are minimum s-connected. The graph Hs,n
is as follows.

Case 1. s = 2r, r > 0. H2r,n is with vertex set {0, 1, 2, . . . , n− 1} and two vertices i and j are adjacent if i− r ≤ j ≤ i+ r ,
where addition is taken modulo n.

Case 2. s = 2r + 1, r > 0.
Case 2.1. n is even. Then H2r+1,n is obtained by adding edges joining vertex i to vertex i + n

2 for 1 ≤ i < n
2 on H2r,n.

Case 2.2. n is odd. H2r+1,n is obtained by adding edges [0, (n−1)
2 ] and [0, (n+1)

2 ], and [i, i+ (n+1)
2 ] for 1 ≤ i < (n−1)

2 on H2r,n.
Clearly,Hδ,n hasminimumdegree δ and theminimum edge–degree 2δ+0−2. In particular,Hδ,n has ⌈

δ
2n⌉ edges. A graph

G is called almost n-regular if there is at most one vertex of degree n + 1 and all other vertices have degree n. The following
theorem follows immediately from the argument above.

Theorem 1.2. |E(Gn,δ,0)| ≥ ⌈
δ
2n⌉ and |E(Gn,δ,0)| = ⌈

δ
2n⌉ if and only if Gn,δ,0 is an almost δ-regular graph.
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