

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The minimum restricted edge-connected graph and the minimum size of graphs with a given edge–degree^{\star}

Weihua Yang^{[a,](#page-0-1)}*, Yingzhi Tian^{[b](#page-0-3)}, Hengzhe Li^{[c](#page-0-4)}, Hao Li^{[d](#page-0-5)}, Xiaof[e](#page-0-6)ng Guo^e

^a *Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024, China*

^b *College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China*

^c *College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China*

d *Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-sud, 91405-Orsay cedex, France*

e *School of Mathematical Science, Xiamen University, Xiamen Fujian 361005, China*

ARTICLE INFO

Article history: Received 26 January 2011 Received in revised form 21 October 2013 Accepted 24 October 2013 Available online 13 November 2013

Keywords: Edge–degree Extremal graph theory Edge-connectivity Restricted edge connectivity Minimum restricted edge connected graphs

a b s t r a c t

Let $G = (V(G), E(G))$ be a graph. Determining the minimum and/or maximum size ($|E(G)|$) of graphs with some given parameters is a classic extremal problem in graph theory. For a graph *G* and $e = uv \in E(G)$, we denote $d(e) = d(u) + d(v) - 2$ the edge-degree of *e*. In this paper, we obtain a lower bound for the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree $2\delta + k - 2$. Moreover, we characterize the extremal graphs for $k = 0, 1, 2$. As an application, we characterize some kinds of minimum restricted edge connected graphs.

© 2013 Elsevier B.V. All rights reserved.

1. The size of graph with given minimum degree and minimum edge degree

Let $G = (V(G), E(G))$ be a graph. Unless stated otherwise, we use [\[2\]](#page--1-0) for terminology and notations not defined here. In particular, we call $|E(G)|$ the *size* of *G*. For $u \in V(G)$, the degree of *u* in *G* is denoted by $d_G(u)$, or simply $d(u)$. We denote $δ(G)$ the minimum degree of *G*, $D_t(G)$ (or simply, D_t) the set of vertices of degree *t* in *G*, $D_{>t}(G)$ (or simply, $D_{>t}$) the set of vertices of degrees at least t in G, respectively. Let $d_t = |D_t(G)|$. For $e = uv \in E(G)$, denote by $d(e) = d(u) + d(v) - 2$ the edge-degree of e, and let $\xi(G) = \min\{d(e) : e \in E(G)\}$ (if e is a loop of G, then $u = v$). For $v \in V(G)$ and $A \subseteq V(G)$, we denote $N_G(v)$ the set of the neighbors of v in *G* and $N_G(A)$ the set $(\bigcup_{v\in V(A)}N_G(v))\setminus V(A)$, respectively.

Determining the minimum and/or maximum size of graphs with some given parameters is a classic extremal problem in graph theory, see [\[1\]](#page--1-1). In this paper, we consider the following problem: What is the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree 2δ+*k*−2? We obtain a lower bound for the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree 2δ + *k* − 2. Moreover, we characterize the extremal graphs for *k* = 0, 1, 2. As an application, we characterize some kinds of minimum restricted edge connected graphs.

In the following theorem, the graph considered may have loops (a loop is an edge with two same endpoints). For a graph *G* and *u* ∈ *V*(*G*), let *E_G*(*u*) be the set of edges incident with *u* in *G*. When the graph *G* is understood from the context, we

 \overrightarrow{x} The research is supported by CSC and NSFC (No. 11301371 and No. 11171279).

∗ Corresponding author. Tel.: +33 0169156509. *E-mail addresses:* [ywh222@163.com,](mailto:ywh222@163.com) ywh222@lri.fr (W. Yang).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.dam.2013.10.028>

write E_u for $E_G(u)$, δ and *n* for δ(*G*) and |*V*(*G*)|, respectively. Denote by G_n ,δ,*k* a graph with order *n*, minimum degree δ, and minimum edge–degree $2\delta + k - 2$, and let $\mathcal{G}_{n,\delta,k}$ be the set of all $G_{n,\delta,k}$'s.

Theorem 1.1. Let G be a graph with minimum degree $\delta \geq 3$, $\xi(G) \geq 2\delta + k - 2$. Then $|E(G)| \geq \frac{\delta}{2}n + \frac{\delta k}{2(\delta + k)}d_{\delta}$. Moreover, *equality holds if and only if* $d_{\delta} = \frac{\delta + k}{2\delta + k} n$ *and* $V(G) = D_{\delta} \cup N(D_{\delta})$ *.*

Proof. Let $N(G) = N_G(D_\delta)$ and $T(G) = V \setminus (N \cup D_\delta)$ (or simply, we use N and T for $N(G)$ and $T(G)$). Note that $k \ge 0$ and the inequality holds if $k = 0$. Then we may assume that *G* is a graph with $\xi(G) \ge 2\delta - 1$, i.e. $k \ge 1$. Thus, D_δ is an independent set of *G*. The degrees of vertices in *N* are at least $\delta + k$ and the degrees of vertices in *T* are at least $\delta + 1$. We consider the size of *G* by distinguishing the following two cases.

If $|N| > \frac{\delta}{\delta + k} d_{\delta}$, we have

$$
|E(G)| = \frac{\sum id_i}{2} \ge \frac{\delta d_{\delta}}{2} + \frac{\delta + k}{2} |N| + \frac{\delta + 1}{2} |T|
$$

\n
$$
= \frac{\delta d_{\delta}}{2} + \frac{\delta + k}{2} |N| + \frac{\delta + 1}{2} (n - d_{\delta} - |N|)
$$

\n
$$
= \frac{\delta}{2} n + \frac{n}{2} - \frac{d_{\delta}}{2} - \frac{\delta + 1}{2} |N| + \frac{d_{\delta} + k}{2} |N|
$$

\n
$$
= \frac{\delta}{2} n + \frac{k - 1}{2} |N| + \frac{\delta}{2} n - \frac{d_{\delta}}{2}
$$

\n
$$
> \frac{\delta}{2} n + \frac{k - 1}{2} \left(\frac{\delta}{\delta + k} d_{\delta} \right) + \frac{\delta}{2} n - \frac{d_{\delta}}{2}
$$

\n
$$
= \frac{\delta}{2} n + \frac{\delta k}{2(\delta + k)} d_{\delta} - \frac{\delta}{2(\delta + k)} d_{\delta} + \frac{|N| + |T|}{2}.
$$

\n(1)

By the assumption, we have $|E(G)| \ge \frac{\delta}{2}n + \frac{\delta k}{2(\delta + k)}d_\delta$ since $\frac{|N| + |T|}{2} \ge \frac{\delta}{2(\delta + k)}d_\delta$. If $|N| \leq \frac{\delta}{\delta + k} d_{\delta}$, we have

$$
|E(G)| \geq \delta d_{\delta} + \frac{\delta + 1}{2}|T|
$$

= $\frac{\delta}{2}d_{\delta} + \frac{\delta}{2}\delta|N| + \frac{\delta}{2}d_{\delta} - \frac{\delta}{2}\delta|N| + \frac{\delta + 1}{2}|T|$
= $\frac{\delta}{2}n + \frac{\delta}{2}d_{\delta} - \frac{\delta}{2}|N| + \frac{1}{2}|T|$
 $\geq \frac{\delta}{2}n + \frac{\delta}{2}d_{\delta} - \frac{\delta}{2}\frac{\delta}{\delta + k}d_{\delta} + \frac{1}{2}|T|$
 $\geq \frac{\delta}{2}n + \frac{\delta k}{2(\delta + k)}d_{\delta}.$ (2)

By inequality [\(2\),](#page-1-0) one can see that if $|N| < \frac{\delta}{\delta + k}d_\delta$, then $|E(G)| > \frac{\delta}{2}n + \frac{\delta k}{2(\delta + k)}d_\delta$. Moreover, if the equality holds in inequality [\(2\),](#page-1-0) then $|T| = 0$. Note that $|N| = \frac{\delta}{\delta + k} d_{\delta}$ and $|T| = 0$ imply that $d_{\delta} = \frac{\delta + k}{2\delta + k} n$. Thus, the equality holds if and only if $d_{\delta} = \frac{\delta + k}{2\delta + k} n$ and $|N| = \frac{\delta}{2\delta + k} n$. We complete the proof. \square

We next consider the extremal graphs for $k = 0, 1, 2$. By [Theorem 1.1,](#page-1-1) we have $|E(G_{n,\delta,k})| \geq \lceil \frac{\delta}{2}n \rceil$ if $k = 0$. The following $\int \frac{\delta}{2} n$, $H_{s,m} \in \mathcal{G}_{n,\delta,k}$ such that $|E(H_{s,m})| = \lceil \frac{\delta}{2} n \rceil$.

For integers *s*, *n*, $n \geq s + 1$, Harary [\[5\]](#page--1-2) constructed classes of graphs $H_{s,n}$ that are minimum *s*-connected. The graph $H_{s,n}$ is as follows.

Case 1, $s = 2r$, $r > 0$. $H_{2r,n}$ is with vertex set {0, 1, 2, ..., $n-1$ } and two vertices *i* and *j* are adjacent if $i - r \le j \le i + r$, where addition is taken modulo *n*.

Case 2, *s* = $2r + 1$, $r > 0$.

Case 2.1. *n* is even. Then $H_{2r+1,n}$ is obtained by adding edges joining vertex *i* to vertex $i + \frac{n}{2}$ for $1 \le i < \frac{n}{2}$ on $H_{2r,n}$.

Case 2.2. *n* is odd. $H_{2r+1,n}$ is obtained by adding edges $[0, \frac{(n-1)}{2}]$ and $[0, \frac{(n+1)}{2}]$, and $[i, i + \frac{(n+1)}{2}]$ for $1 \le i < \frac{(n-1)}{2}$ on $H_{2r,n}$. Clearly, $H_{\delta,n}$ has minimum degree δ and the minimum edge–degree $2\delta+0-2$. In particular, $H_{\delta,n}$ has $\lceil\frac{\delta}{2}n\rceil$ edges. A graph *G* is called *almost n-regular* if there is at most one vertex of degree *n* + 1 and all other vertices have degree *n*. The following theorem follows immediately from the argument above.

Theorem 1.2. $|E(G_{n,\delta,0})| \geq \lceil \frac{\delta}{2} n \rceil$ and $|E(G_{n,\delta,0})| = \lceil \frac{\delta}{2} n \rceil$ if and only if $G_{n,\delta,0}$ is an almost δ -regular graph.

Download English Version:

<https://daneshyari.com/en/article/418790>

Download Persian Version:

<https://daneshyari.com/article/418790>

[Daneshyari.com](https://daneshyari.com/)