

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The minimum restricted edge-connected graph and the minimum size of graphs with a given edge-degree*

Weihua Yang^{a,*}, Yingzhi Tian^b, Hengzhe Li^c, Hao Li^d, Xiaofeng Guo^e

^a Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024, China

^b College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China

^c College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

^d Laboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.-Université de Paris-sud, 91405-Orsay cedex, France

^e School of Mathematical Science, Xiamen University, Xiamen Fujian 361005, China

ARTICLE INFO

Article history: Received 26 January 2011 Received in revised form 21 October 2013 Accepted 24 October 2013 Available online 13 November 2013

Keywords: Edge-degree Extremal graph theory Edge-connectivity Restricted edge connectivity Minimum restricted edge connected graphs

ABSTRACT

Let G = (V(G), E(G)) be a graph. Determining the minimum and/or maximum size (|E(G)|) of graphs with some given parameters is a classic extremal problem in graph theory. For a graph G and $e = uv \in E(G)$, we denote d(e) = d(u) + d(v) - 2 the edge-degree of e. In this paper, we obtain a lower bound for the minimum size of graphs with a given order n, a given minimum degree δ and a given minimum edge-degree $2\delta + k - 2$. Moreover, we characterize the extremal graphs for k = 0, 1, 2. As an application, we characterize some kinds of minimum restricted edge connected graphs.

© 2013 Elsevier B.V. All rights reserved.

1. The size of graph with given minimum degree and minimum edge degree

Let G = (V(G), E(G)) be a graph. Unless stated otherwise, we use [2] for terminology and notations not defined here. In particular, we call |E(G)| the *size* of *G*. For $u \in V(G)$, the degree of *u* in *G* is denoted by $d_G(u)$, or simply d(u). We denote $\delta(G)$ the minimum degree of *G*, $D_t(G)$ (or simply, D_t) the set of vertices of degree *t* in *G*, $D_{\geq t}(G)$ (or simply, $D_{\geq t}$) the set of vertices of degrees at least *t* in *G*, respectively. Let $d_t = |D_t(G)|$. For $e = uv \in E(G)$, denote by d(e) = d(u) + d(v) - 2 the *edge-degree* of *e*, and let $\xi(G) = \min\{d(e) : e \in E(G)\}$ (if *e* is a loop of *G*, then u = v). For $v \in V(G)$ and $A \subseteq V(G)$, we denote $N_G(v)$ the set of the neighbors of *v* in *G* and $N_G(A)$ the set $(\bigcup_{v \in V(A)} N_G(v)) \setminus V(A)$, respectively.

Determining the minimum and/or maximum size of graphs with some given parameters is a classic extremal problem in graph theory, see [1]. In this paper, we consider the following problem: What is the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree $2\delta + k - 2$? We obtain a lower bound for the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree $2\delta + k - 2$? We obtain a lower bound for the minimum size of graphs with a given order *n*, a given minimum degree δ and a given minimum edge–degree $2\delta + k - 2$. Moreover, we characterize the extremal graphs for k = 0, 1, 2. As an application, we characterize some kinds of minimum restricted edge connected graphs.

In the following theorem, the graph considered may have loops (a loop is an edge with two same endpoints). For a graph G and $u \in V(G)$, let $E_G(u)$ be the set of edges incident with u in G. When the graph G is understood from the context, we

 $^{
m in}$ The research is supported by CSC and NSFC (No. 11301371 and No. 11171279).

* Corresponding author. Tel.: +33 0169156509. *E-mail addresses*: ywh222@163.com, ywh222@Iri.fr (W. Yang).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.10.028

write E_u for $E_G(u)$, δ and n for $\delta(G)$ and |V(G)|, respectively. Denote by $G_{n,\delta,k}$ a graph with order n, minimum degree δ , and minimum edge–degree $2\delta + k - 2$, and let $g_{n,\delta,k}$ be the set of all $G_{n,\delta,k}$'s.

Theorem 1.1. Let G be a graph with minimum degree $\delta \geq 3$, $\xi(G) \geq 2\delta + k - 2$. Then $|E(G)| \geq \frac{\delta}{2}n + \frac{\delta k}{2(\delta+k)}d_{\delta}$. Moreover, equality holds if and only if $d_{\delta} = \frac{\delta+k}{2\delta+k}n$ and $V(G) = D_{\delta} \cup N(D_{\delta})$.

Proof. Let $N(G) = N_G(D_\delta)$ and $T(G) = V \setminus (N \cup D_\delta)$ (or simply, we use *N* and *T* for N(G) and T(G)). Note that $k \ge 0$ and the inequality holds if k = 0. Then we may assume that *G* is a graph with $\xi(G) \ge 2\delta - 1$, i.e. $k \ge 1$. Thus, D_δ is an independent set of *G*. The degrees of vertices in *N* are at least $\delta + k$ and the degrees of vertices in *T* are at least $\delta + 1$. We consider the size of *G* by distinguishing the following two cases.

If $|N| > \frac{\delta}{\delta + k} d_{\delta}$, we have

$$\begin{split} |E(G)| &= \frac{\sum i d_i}{2} \ge \frac{\delta d_{\delta}}{2} + \frac{\delta + k}{2} |N| + \frac{\delta + 1}{2} |T| \\ &= \frac{\delta d_{\delta}}{2} + \frac{\delta + k}{2} |N| + \frac{\delta + 1}{2} (n - d_{\delta} - |N|) \\ &= \frac{\delta}{2} n + \frac{n}{2} - \frac{d_{\delta}}{2} - \frac{\delta + 1}{2} |N| + \frac{d_{\delta} + k}{2} |N| \\ &= \frac{\delta}{2} n + \frac{k - 1}{2} |N| + \frac{\delta}{2} n - \frac{d_{\delta}}{2} \\ &> \frac{\delta}{2} n + \frac{k - 1}{2} \left(\frac{\delta}{\delta + k} d_{\delta} \right) + \frac{\delta}{2} n - \frac{d_{\delta}}{2} \\ &= \frac{\delta}{2} n + \frac{\delta k}{2(\delta + k)} d_{\delta} - \frac{\delta}{2(\delta + k)} d_{\delta} + \frac{|N| + |T|}{2} . \end{split}$$
(1)

By the assumption, we have $|E(G)| \ge \frac{\delta}{2}n + \frac{\delta k}{2(\delta+k)}d_{\delta}$ since $\frac{|N|+|T|}{2} \ge \frac{\delta}{2(\delta+k)}d_{\delta}$. If $|N| \le \frac{\delta}{\delta+k}d_{\delta}$, we have

$$|E(G)| \geq \delta d_{\delta} + \frac{\delta + 1}{2}|T|$$

$$= \frac{\delta}{2} d_{\delta} + \frac{\delta}{2} \delta |N| + \frac{\delta}{2} d_{\delta} - \frac{\delta}{2} \delta |N| + \frac{\delta + 1}{2}|T|$$

$$= \frac{\delta}{2} n + \frac{\delta}{2} d_{\delta} - \frac{\delta}{2} |N| + \frac{1}{2}|T|$$

$$\geq \frac{\delta}{2} n + \frac{\delta}{2} d_{\delta} - \frac{\delta}{2} \frac{\delta}{\delta + k} d_{\delta} + \frac{1}{2}|T|$$

$$\geq \frac{\delta}{2} n + \frac{\delta k}{2(\delta + k)} d_{\delta}.$$
(2)

By inequality (2), one can see that if $|N| < \frac{\delta}{\delta + k} d_{\delta}$, then $|E(G)| > \frac{\delta}{2}n + \frac{\delta k}{2(\delta + k)} d_{\delta}$. Moreover, if the equality holds in inequality (2), then |T| = 0. Note that $|N| = \frac{\delta}{\delta + k} d_{\delta}$ and |T| = 0 imply that $d_{\delta} = \frac{\delta + k}{2\delta + k} n$. Thus, the equality holds if and only if $d_{\delta} = \frac{\delta + k}{2\delta + k} n$ and $|N| = \frac{\delta}{2\delta + k} n$. We complete the proof. \Box

We next consider the extremal graphs for k = 0, 1, 2. By Theorem 1.1, we have $|E(G_{n,\delta,k})| \ge \lceil \frac{\delta}{2}n \rceil$ if k = 0. The following graph $H_{s,m} \in \mathcal{G}_{n,\delta,k}$ such that $|E(H_{s,m})| = \lceil \frac{\delta}{2}n \rceil$.

For integers $s, n, n \ge s + 1$, Harary [5] constructed classes of graphs $H_{s,n}$ that are minimum *s*-connected. The graph $H_{s,n}$ is as follows.

Case 1. s = 2r, r > 0. $H_{2r,n}$ is with vertex set $\{0, 1, 2, ..., n-1\}$ and two vertices i and j are adjacent if $i - r \le j \le i + r$, where addition is taken modulo n.

Case 2. s = 2r + 1, r > 0.

Case 2.1. *n* is even. Then $H_{2r+1,n}$ is obtained by adding edges joining vertex *i* to vertex $i + \frac{n}{2}$ for $1 \le i < \frac{n}{2}$ on $H_{2r,n}$.

Case 2.2. *n* is odd. $H_{2r+1,n}$ is obtained by adding edges $[0, \frac{(n-1)}{2}]$ and $[0, \frac{(n+1)}{2}]$, and $[i, i + \frac{(n+1)}{2}]$ for $1 \le i < \frac{(n-1)}{2}$ on $H_{2r,n}$. Clearly, $H_{\delta,n}$ has minimum degree δ and the minimum edge–degree $2\delta + 0 - 2$. In particular, $H_{\delta,n}$ has $\lceil \frac{\delta}{2}n \rceil$ edges. A graph *G* is called *almost n-regular* if there is at most one vertex of degree n + 1 and all other vertices have degree n. The following theorem follows immediately from the argument above.

Theorem 1.2. $|E(G_{n,\delta,0})| \ge \lceil \frac{\delta}{2}n \rceil$ and $|E(G_{n,\delta,0})| = \lceil \frac{\delta}{2}n \rceil$ if and only if $G_{n,\delta,0}$ is an almost δ -regular graph.

Download English Version:

https://daneshyari.com/en/article/418790

Download Persian Version:

https://daneshyari.com/article/418790

Daneshyari.com