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1. The size of graph with given minimum degree and minimum edge degree

Let G = (V(G), E(G)) be a graph. Unless stated otherwise, we use [2] for terminology and notations not defined here.
In particular, we call |E(G)| the size of G. For u € V(G), the degree of u in G is denoted by dg(u), or simply d(u). We denote
4(G) the minimum degree of G, D;(G) (or simply, D;) the set of vertices of degree t in G, D>;(G) (or simply, D>;) the set of
vertices of degrees at least t in G, respectively. Let d; = |D;(G)|. For e = uv € E(G), denote by d(e) = d(u) + d(v) — 2 the
edge—degree of e, and let £(G) = min{d(e) : e € E(G)} (ifeis aloop of G, thenu = v). Forv € V(G) and A C V(G), we denote
N¢(v) the set of the neighbors of v in G and Ng(A) the set (UveV(A) Ng(v)) \ V(A), respectively.

Determining the minimum and/or maximum size of graphs with some given parameters is a classic extremal problem
in graph theory, see [1]. In this paper, we consider the following problem: What is the minimum size of graphs with a given
order n, a given minimum degree § and a given minimum edge-degree 26 +k—2? We obtain a lower bound for the minimum
size of graphs with a given order 1, a given minimum degree § and a given minimum edge-degree 2§ + k — 2. Moreover,
we characterize the extremal graphs for k = 0, 1, 2. As an application, we characterize some kinds of minimum restricted
edge connected graphs.

In the following theorem, the graph considered may have loops (a loop is an edge with two same endpoints). For a graph
G and u € V(G), let Eg(u) be the set of edges incident with u in G. When the graph G is understood from the context, we

* The research is supported by CSC and NSFC (No. 11301371 and No. 11171279).
* Corresponding author. Tel.: +33 0169156509.
E-mail addresses: ywh222@163.com, ywh222@Iri.fr (W. Yang).

0166-218X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.10.028


http://dx.doi.org/10.1016/j.dam.2013.10.028
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.10.028&domain=pdf
mailto:ywh222@163.com
mailto:ywh222@lri.fr
http://dx.doi.org/10.1016/j.dam.2013.10.028

W. Yang et al. / Discrete Applied Mathematics 167 (2014) 304-309 305

write E, for E¢(u), § and n for §(G) and |V (G)|, respectively. Denote by G, s x a graph with order n, minimum degree §, and
minimum edge-degree 26 + k — 2, and let 5 x be the set of all G, 5 k’s.

Theorem 1.1. Let G be a graph with minimum degree § > 3,&(G) > 2§ + k — 2. Then |E(G)| > %n +

equality holds if and only if ds = ;;r"kn and V(G) = Ds U N(Ds).

Proof. Let N(G) = Ng(D;s) and T(G) = V' \ (N U D) (or simply, we use N and T for N(G) and T(G)). Note that k > 0 and the
inequality holds if k = 0. Then we may assume that G is a graph with £(G) > 26 — 1,i.e. k > 1. Thus, D; is an independent
set of G. The degrees of vertices in N are at least § + k and the degrees of vertices in T are at least § + 1. We consider the
size of G by dlstlngmshmg the following two cases.

2(“,() ds. Moreover,
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By inequality (2), one can see that if |[N| < 5+kd5, then |E(G)| > —n + 2<8+k) ds. Moreover, if the equality holds in

inequality (2), then |T| = O Note that [N| = (H_kd(g and |T| = 0 imply that d; = 5% n. Thus, the equality holds if and only

25-+k
ifds = zsaTk” and |[N| = n. We complete the proof. O

28+k

We next consider the extremal graphs for k = 0, 1, 2. By Theorem 1.1, we have |E(Gy 5 k)| > (%nl if k = 0. The following
graph Hg m € Gn.s5.k such that |E(Hs )| = (%nl.

For integers s, n, n > s 4 1, Harary [5] constructed classes of graphs Hs , that are minimum s-connected. The graph H; ,
is as follows.

Case 1.s = 2r,r > 0. Hy , is with vertex set {0, 1, 2, ..., n — 1} and two vertices i and j are adjacentifi—r <j <i+r,
where addition is taken modulo n.

Case2.s =2r+1,r > 0.

Case 2.1. nis even. Then Hy 11 , is obtained by adding edges joining vertex i to vertex i —|— fori<i<? on Hyr .

Case 2.2.nis odd. Hy 11 , is obtained by adding edges [0, ("21)] and [0, (”erl)], and [i, i+ (";1)] for1<i< (”2 Y on Hy, .

Clearly, Hs , has minimum degree § and the minimum edge-degree 26 + 0 — 2. In particular, Hs , has {%nl edges. A graph
G is called almost n-regular if there is at most one vertex of degree n 4+ 1 and all other vertices have degree n. The following
theorem follows immediately from the argument above.

Theorem 1.2. |E(Gy5,0)| > [%n] and |E(Gps,0)| = (%nl if and only if Gy 5,0 is an almost §-regular graph.
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