
Evaluating and comparing language workbenches
Existing results and benchmarks for the future

Sebastian Erdweg d,n, Tijs van der Storm a, Markus Völter e, Laurence Tratt b,
Remi Bosman f, William R. Cook c, Albert Gerritsen f, Angelo Hulshout g,
Steven Kelly h, Alex Loh c, Gabriël Konat i, Pedro J. Molina j, Martin Palatnik f,
Risto Pohjonen h, Eugen Schindler f, Klemens Schindler f, Riccardo Solmi i,
Vlad Vergu i, Eelco Visser i, Kevin van der Vlist k,
Guido Wachsmuth i, Jimi van der Woning l

a CWI, The Netherlands
b King's College London, UK
c University of Texas at Austin, USA
d TU Darmstadt, Germany
e voelter.de, Stuttgart, Germany
f Sioux, Eindhoven, The Netherlands
g Delphino Consultancy, The Netherlands
h MetaCase, Jyväskylä, Finland
i TU Delft, The Netherlands
j Icinetic, Sevilla, Spain
k Sogyo, De Bilt, The Netherlands
l Young Colfield, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 February 2015
Received in revised form
1 July 2015
Accepted 18 August 2015
Available online 28 August 2015

Keywords:
Language workbenches
Domain-specific languages
Questionnaire language
Survey
Benchmarks

a b s t r a c t

Language workbenches are environments for simplifying the creation and use of
computer languages. The annual Language Workbench Challenge (LWC) was launched
in 2011 to allow the many academic and industrial researchers in this area an opportunity
to quantitatively and qualitatively compare their approaches. We first describe all four
LWCs to date, before focussing on the approaches used, and results generated, during the
third LWC. We give various empirical data for ten approaches from the third LWC. We
present a generic feature model within which the approaches can be understood and
contrasted. Finally, based on our experiences of the existing LWCs, we propose a number
of benchmark problems for future LWCs.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Language workbenches, a term popularized by Martin Fowler in 2005 [1], are tools that lower the development costs of
implementing new languages and their associated tools (IDEs, debuggers, etc.). As well as easing the development of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2015.08.007
1477-8424/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: erdweg@cs.tu-darmstadt.de (S. Erdweg).

Computer Languages, Systems & Structures 44 (2015) 24–47

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.007&domain=pdf
mailto:erdweg@cs.tu-darmstadt.de
http://dx.doi.org/10.1016/j.cl.2015.08.007
http://dx.doi.org/10.1016/j.cl.2015.08.007


traditional stand-alone languages, language workbenches also make multi-paradigm and language-oriented programming
environments (see e.g. [2,3]) practical.

For almost as long as programmers have built languages, they have built tools to ease the process, such as parser generators.
Perhaps the earliest tool which we would now think of as a language workbench was SEM [4], which was later followed by tools
such as MetaPlex [5], Metaview [6], QuickSpec [7], and MetaEdit [8], Centaur [9], the Synthesizer generator [10], the ASFþSDF Meta-
Environment [11], Gem-Mex/Montages [12], LRC [13], and Lisa [14]. Most of these systems operated on textual languages and were
intended to work with formal specifications of General Purpose Languages (GPLs) [15]. Nevertheless, many of them were used to
build practical Domain-Specific Languages (DSLs) [16].

Informally, modern language workbenches are often referred to as being textual, graphical, or projectional. Extant textual
workbenches like JastAdd [17], Rascal [18,19], Spoofax [20], and Xtext [21] can be seen as successors of the original language
workbenches, often making use of advances in IDE or editor technology. Many extant graphical workbenches such as MetaEditþ
[22], DOME [23], and GME [24] were originally developed for box and line style diagrams. Projectional workbenches are a recent
addition, with JetBrains MPS [25] and the Intentional DomainWorkbench [26] reviving and refining the old idea of syntax directed
editors [27], opening up the possibility of mixing textual and non-textual notations.

Since language workbenches have come from industry, it is perhaps unsurprising that many real-world projects have
used them. As an indicative sample (in approximate chronological order): the Eurofighter Typhoon used IPSYS's HOOD
toolset [28]; Nokia's feature phones [29] and Polar's heart rate monitors [30] used MetaEditþ; WebDSL [31] and Mobl [32]
were developed using Spoofax.

In short, not only are the uses for language workbenches growing, but so are the number and variety of the workbenches
themselves. One disadvantage of this growing number of systems is that the terminology used and features supported by different
workbenches are so disparate that both users and developers have struggled to understand common principles and design
decisions. Our belief is that a systematic overview of the area is vital to heal this rift.

The Language Workbench Challenge (LWC) was thus started to promote understanding of, and knowledge exchange between,
language workbenches. Each year a language engineering challenge is posed and submissions (mostly, but not exclusively, by the
developers of the tools in question) implement the challenge; documentation is required, so others can understand the
implementation. All contributors then meet to discuss the submitted solutions. Tackling a common challenge allows a better
understanding of the similarities and differences between different workbenches, the design decisions underlying them, their
capabilities, and their strengths and weaknesses.

Contributions and structure: In this paper, we describe the challenges posed by the 4 LWC editions run so far (Section 2),
before explaining why we focus on the results generated by its third incarnation, LWC'13. We then make the following
contributions:

� We establish a feature model that captures the design space of language workbenches as observed in the previous LWCs
(Section 3).

� We present and discuss the 10 language workbenches participating in LWC'13 by classifying them according to our
feature model (Section 4).

� We present empirical data on 10 implementations of the LWC'13 assignment: a questionnaire DSL (Section 5).
� Based on the experiences from the previous LWCs, we propose benchmark problems to be used in future LWCs (Sections

6.1 and 6.5) and also two examples for evaluating the benchmarks in Section 7.

This paper is an extended version of [33]. The discussion of the various editions of the LWC (at the beginning of Section 2) and
the benchmarks (in Sections 6.1 and 6.5) are new in this version.

2. Background

The idea for the LWC came from discussions at the 2010 edition of the Code Generation conference. Since then, four LWCs have
been held, each posing a different challenge. We first describe each year's challenges, before explaining why we focus in this paper
on data collected from the third LWC. We start out with a note on terminology.

2.1. Terminology

In this paper we use terminology from different areas, including DSL engineering (“program”, “abstract syntax”), model-driven
engineering (“metamodel”, “model-to-text”, “model-to-model”), and language-oriented programming (“language extension”). The
reason is that the various tools as well as the authors come from this variety of backgrounds. We decided to not try to unify the
different terminologies into a single one because doing this well would amount to its own paper. We believe that each of the
terms is clear in whatever context it is used in the paper.

S. Erdweg et al. / Computer Languages, Systems & Structures 44 (2015) 24–47 25



Download English Version:

https://daneshyari.com/en/article/418795

Download Persian Version:

https://daneshyari.com/article/418795

Daneshyari.com

https://daneshyari.com/en/article/418795
https://daneshyari.com/article/418795
https://daneshyari.com

