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a b s t r a c t

Given a graphG and a positive integer Rwe address the following combinatorial search the-
oretic problem: What is the minimum number of queries of the form ‘‘does an unknown
vertex v ∈ V (G) belong to the ball of radius r around u?’’ with u ∈ V (G) and r ≤ R that
is needed to determine v. We consider both the adaptive case when the jth query might
depend on the answers to the previous queries and the non-adaptive case when all queries
must be made at once. We obtain bounds on the minimum number of queries for hyper-
cubes, the Erdős–Rényi random graphs and graphs of bounded maximum degree.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Combinatorial search theory is concerned with problems of the following type ‘‘given a finite set S and an unknown
element x ∈ S, find x as quickly as possible’’. In order to find x, we are allowed to ask questions of the type ‘‘is x contained in
a subset B ⊆ S?’’ for various B ⊆ S. There are many real-world search problems which are of this type. For example given
a set of blood samples, we might want to identify one which is infected. Or given a building, we might want to determine
which room a person is hiding in.

Notice that to guarantee finding the unknown element x in a set S we always need to ask at least ⌈log2 |S|⌉ questions.
Indeed, to be able to distinguish between two elements x, x′

∈ S, we must at some point query a set B ⊆ S such that x ∈ B
and x′

∉ B. However if we ask less than ⌈log2 |S|⌉ questions, then by the Pigeonhole Principle, there would be two elements
x and x′

∈ S which receive the same sequence of yes/no answers.
The lower bound ⌈log2 |S|⌉ on the number of questions can be tight. In fact it is always possible to find x using ⌈log2 |S|⌉

questions. Indeed first we divide S in half and ask which half x is in. Then we divide the half containing x in half again, and
find out which one x is in. Proceeding this way, we reduce the subset of S which xmay be in by half at every step, and hence
we find x after at most ⌈log2 |S|⌉ queries. This is the so called halving search.
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Notice that in the above search the set we query at each step depends on the answers we got in the previous steps. We
say that a search is adaptive if a question is allowed to depend on answers to previous questions. In practice we often would
like to make all our queries at the same time (for example if each individual query takes a long time, it would save time
to make queries simultaneously). We say that a search is non-adaptive if the queries do not depend on answers obtained
from previous ones. Just like in the adaptive case, there exist non-adaptive searches using the optimal ⌈log2 |S|⌉ number of
queries. For example if S is the set of 0–1 sequences of length n, then we can find x = (x1, . . . , xn) using the n = ⌈log2 |S|⌉
queries ‘‘is xi equal to zero or one?’’

Note that the answers to a set Q of query sets surely determine the unknown element x if and only if for any pair of
elements s1, s2 ∈ S there exists a query B ∈ Q with |B ∩ {s1, s2}| = 1. In this case we say that B separates s1 and s2, and Q is
said to be a separating system or said to possess the separating property.

In this paper we study a search problem when the set S is a metric space, and we are only allowed to query sets Bwhich
are balls in the metric space. We call this the ball search. There are natural search problems of this type. For example if we
want to track someone moving through a building, we might set up sensors at various points in the building which tell us
if the person is within a certain range. This problem is inherently non-adaptive since the person is moving (and it would
usually be inpractical to change the location of the sensors as the person moves). Another example of a ball search is to
locate some object in the night sky using a telescope. This problem is inherently adaptive since once we capture the object
with the telescope, we would want to zoom in order to get a better idea of its location.

Ball searches have been studied before, under the name of identifying codes on graphs. A ball BG(v, r) of radius r at vertex
v in a graph G is the set of vertices in G that have distance at most r from v. (If G is specified, we simply write B(v, r).) In
general, if we consider a set X of vertices in G, BG(X, r) or simply B(X, r) denotes the set of vertices in G that have distance
at most r from X .

An (r, ≤ l)-identifying code of the graph G is a set C of vertices such that for every pair of distinct subsets X, Y ⊂ V (G)
with 0 < |X |, |Y | ≤ l the sets B(X, r) ∩ C and B(Y , r) ∩ C are different and non-empty. Notice that given a graph with
an (r, ≤ 1)-identifying code C , we can always find an unknown vertex using the non-adaptive search querying the balls
{B(c, r) : c ∈ C}. Identifying codes were introduced by Karpovsky, Chakrabarty, and Levitin [16] and the problem of
determining the minimum size i(l)r (G) of an identifying code in G has since attracted the attention of many researchers (for
a full bibliography see [20]). An adaptive version of identifying codes was introduced by Moncel in his doctoral thesis [21]
and in [3]. The minimum number of queries needed in the adaptive case is denoted by a(l)

r (G).
We will study a slight variant of identifying codes in which the restriction that the balls in the search must cover all the

vertices of G is omitted. The reason we study this variant is that it is unnatural in a searching theory point of view and that it
seems to have links to a natural combinatorial object (namely the Fano Plane. See Section 2 for details).We denote byM(G, r)
the minimum number of queries needed to non-adaptively find an unknown vertex v ∈ G using balls of radius r . Similarly
we denote by A(G, r) the minimum number of queries needed to adaptively find an unknown vertex v ∈ G using balls of
radius r . Notice that we always have i(1)r (G) ≤ M(G, r) ≤ i(1)r (G)+1 and a(1)

r (G) ≤ A(G, r) ≤ a(1)
r (G)+1. Therefore, sincewe

willmostly be interested in asymptotic estimates, it usuallywill notmatterwhetherwe study the quantityM(G, r) or i(1)r (G).
Notice that in the above ball searcheswe specified thatwe could only query balls of radius exactly r .With this restriction it

is not always possible to find an unknown vertex v—for example if r is bigger than the diameter of G (themaximumdistance
between two vertices inG), then querying balls of radius r gives no information about the location of v. At the 5th Emléktábla
Workshop, Gyula Katona asked what happens [18] if balls of radius at most r should be allowed as queries. We will denote
byM(G, ≤ r) and A(G, ≤ r) theminimumnumber of queries to find an unknown vertex v ∈ G using balls of radius atmost r
in the non-adaptive and adaptive searches respectively. We will denote byM(G) and A(G) the minimum number of queries
to find an unknown vertex v ∈ G using balls (of any radius) in the non-adaptive and adaptive searches respectively. Notice
that since balls of radius zero are just single vertices in G, we always haveM(G, ≤ r), A(G, ≤ r) ≤ |G| − 1. Also, we trivially
have M(G, ≤ r) ≤ M(G, r) and A(G, ≤ r) ≤ A(G, r). The quantities M(G, ≤ r) and A(G, ≤ r) are monotonic in the sense
that M(G) ≤ M(G, ≤ r + 1) ≤ M(G, ≤ r) and A(G) ≤ A(G, ≤ r + 1) ≤ A(G, ≤ r) hold for all r . Note that in any graph G
two vertices x, y ∈ V (G) are separated by a ball of radius r with center z ∈ V (G) if and only if z ∈ BG(x, r)△BG(y, r), where
X△Y = X\Y ∪ Y\X for any two sets X and Y .

The firstmetric spaces inwhichwewill study the ball search are hypercubes. LetQn be the n dimensional hypercube—the
set of all 0–1 vectors of length n. We define a graph on Qn by placing an edge between two vectors whenever they differ in
exactly one entry. In this graph the distance d(u, v) between two vertices is exactly the Hamming distance between u and v,
i.e. the number of entries onwhich u and v differ. If c is an element ofQn and r is a non-negative integer, then B(c, r) denotes
the ball of center c and radius r , that is, B(c, r) := {v : v ∈ Qn, d(c, v) ≤ r}. The most recent upper and lower bounds on
i(l)r (Qn)were proved in [5,10,8,9,14]. Adaptive identification inQn was studied by Junnila [15] who obtained lower and upper
bounds on a(1)

1 (Qn). To be able to state our results let K(n, r) denote the minimum number of balls of radius r that cover all
vertices of Qn. The centers of such balls are said to form covering codes in Qn [6]. It is known that for any fixed r , we have
K(n, r) = Θ(2n/V (n, r)).

Theorem 1.1. The functions A(Qn), A(Qn, ≤ r) and A(Qn, r) satisfy the following inequalities:
(i)

n ≤ A(Qn) ≤ n − 1 + ⌈log(n + 1)⌉ .
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