Three-arc graphs: Characterization and domination

Guangjun Xu ${ }^{\text {ab, }, *}$, Sanming Zhou ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Computing Science, Zunyi Normal College, Zunyi 563002, China
${ }^{\text {b }}$ School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

A R T I C L E I N F O

Article history:

Received 25 February 2014
Received in revised form 12 April 2015
Accepted 21 April 2015
Available online 16 May 2015

Keywords:

3-arc graph
Domination number
Graph operation

Abstract

An arc of a graph is an oriented edge and a 3 -arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3 -arc graph of a graph G is defined to have vertices the arcs of G such that two arcs $u v, x y$ are adjacent if and only if (v, u, x, y) is a 3 -arc of G. In this paper we give a characterization of 3 -arc graphs and obtain sharp upper bounds on the domination number of the 3-arc graph of a graph G in terms that of G. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

The 3-arc construction [11] is a relatively new graph operation that has been used in the classification or characterization of several families of arc-transitive graphs [5,7,11,12,21,22]. (A graph is arc-transitive if its automorphism group acts transitively on the set of oriented edges.) As noted in [8], although this operation was first introduced in the context of graph symmetry, it is also of interest for general (not necessarily arc-transitive) graphs, and many problems on this new operation remain unexplored. In this paper we give partial solutions to two problems posed in [8] regarding 3-arc graphs.

An arc of a graph G is an ordered pair of adjacent vertices. For adjacent vertices u, v of G, we use $u v$ to denote the arc from u to $v, v u(\neq u v)$ the arc from v to u, and $\{u, v\}$ the edge between u and v. A 3-arc of G is a 4-tuple (v, u, x, y) of vertices, possibly with $v=y$, such that both (v, u, x) and (u, x, y) are paths of G. Let Δ be a set of 3-arcs of G. Suppose that Δ is self-paired in the sense that $(y, x, u, v) \in \Delta$ whenever $(v, u, x, y) \in \Delta$. Then the 3 - arc graph of G relative to Δ, denoted by $X(G, \Delta)$, is defined [11] to be the (undirected) graph whose vertex set is the set of arcs of G such that two vertices corresponding to arcs $u v$ and $x y$ are adjacent if and only if $(v, u, x, y) \in \Delta$. In the context of graph symmetry, Δ is usually a self-paired orbit on the set of 3 -arcs under the action of an automorphism group of G. In the case where Δ is the set of all 3-arcs of G, we call $X(G, \Delta)$ the 3-arc graph [9] of G and denote it by $X(G)$.

The first study of 3-arc graphs of general graphs was conducted by Knor and Zhou in [9]. Among other things they proved that if G has vertex-connectivity $\kappa(G) \geq 3$ then its 3-arc graph has vertex-connectivity $\kappa(X(G)) \geq(\kappa(G)-1)^{2}$, and if G is connected of minimum degree $\delta(G) \geq 3$ then the diameter $\operatorname{diam}(X(G))$ of $X(G)$ is equal to diam (G), diam $(G)+1$ or diam $(G)+2$. In [1], Balbuena, García-Vázquez and Montejano improved the bound on the vertex-connectivity by proving $\kappa(X(G)) \geq \min \left\{\kappa(G)(\delta(G)-1),(\delta(G)-1)^{2}\right\}$ for any connected graph G with $\delta(G) \geq 3$. They also proved [1] that for such a graph the edge-connectivity of $X(G)$ satisfies $\lambda(X(G)) \geq(\delta(G)-1)^{2}$, and they further gave a lower bound on the restricted edge-connectivity of $X(G)$ in the case when G is 2-connected. In [8], Knor, Xu and Zhou studied the independence, domination and chromatic numbers of 3-arc graphs.

[^0]In a recent paper [20] we obtained a necessary and sufficient condition [20, Theorem 1] for $X(G)$ to be Hamiltonian. In particular, we proved [20, Theorem 2] that a 3 -arc graph is Hamiltonian if and only if it is connected, and that if G is connected with $\delta(G) \geq 3$ then all its iterative 3-arc graphs $X^{i}(G)$ are Hamiltonian, $i \geq 1$. (The iterative 3-arc graphs are recursively defined by $X^{1}(G):=X(G)$ and $X^{i+1}(G):=X\left(X^{i}(G)\right)$ for $i \geq 1$.) As a consequence we obtained [20, Corollary 2] that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This provides new support to the well-known Lovász-Thomassen conjecture [17] which asserts that all connected vertex-transitive graphs, with finitely many exceptions, are Hamiltonian. We also proved (as a consequence of a more general result) [20, Theorem 4] that if a graph G with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs $X^{i}(G), i \geq 1$.

The 3-arc construction was generalized to directed graphs in [8]. Given a directed graph D, the 3-arc graph [8] of D, denoted by $X(D)$, is defined to be the undirected graph whose vertex set is the set of arcs of D such that two vertices corresponding to arcs $u v, x y$ of D are adjacent if and only if $v \neq x, y \neq u$ and u, x are adjacent in D. Recently, we proved with Wood [19] that the well-known Hadwiger's graph colouring conjecture [18] is true for the 3-arc graph of any directed graph with no loops.

In spite of the results above, compared with the well-known line graph operation [6] and the 2-path graph operation $[3,10]$, our knowledge of 3 -arc graphs is quite limited and many problems on them are yet to be explored. For instance, the following problems were posed in [8]:

Problem 1. Characterize 3-arc graphs of connected graphs.
Problem 2. Give a sharp upper bound on $\gamma(X(G))$ in terms of $\gamma(G)$ for any connected graph G with $\delta(G) \geq 2$, where γ denotes the domination number.

In this paper we give partial solutions to these problems. We first show that there is no forbidden subgraph characterization of 3 -arc graphs (Proposition 1), and then we provide a descriptive characterization of 3 -arc graphs (Theorem 2). We give a sharp upper bound for $\gamma(X(G)$) in terms of $\gamma(G)$ (Theorem 5) for any graph G with $\delta(G) \geq 2$, and more upper bounds for $\gamma(X(G)$) in terms of $\gamma(G)$ and the maximum degree $\Delta(G)$ when $2 \leq \delta(G) \leq 4$ (Theorem 6). Finally, we prove that if G is claw-free with $\delta(G) \geq 2$, then $\gamma(X(G)) \leq 4 \gamma(G)$ and moreover this bound is sharp (Theorem 7).

All graphs in the paper are finite and undirected with no loops or multiple edges. The order of a graph is the number of vertices in the graph. As usual, the minimum and maximum degrees of a graph $G=(V(G), E(G))$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The degree of a vertex $v \in V(G)$ in G is denoted by $\operatorname{deg}(v)$. The neighbourhood of v in G, denoted by $N(v)$, is the set of vertices of G adjacent to v, and the closed neighbourhood of v is defined as $N[v]:=N(v) \cup\{v\}$. We say that v dominates every vertex in $N(v)$, or every vertex in $N(v)$ is dominated by v. For a subset S of $V(G)$, denote $N(S):=\cup_{v \in S} N(v)$ and $N[S]:=N(S) \cup S$. We may add subscript G to these notations (e.g. $\operatorname{deg}_{G}(v)$) to indicate the underlying graph when there is a risk of confusion. If $N[S]=V(G)$, then S is called a dominating set of G. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G; a dominating set of G with cardinality $\gamma(G)$ is called a $\gamma(G)$-set of G. The subgraph of G induced by S is denoted by $G[S]$, and the subgraph of G induced by $V(G)-S$ is denoted by $G-S$.

The reader is referred to [18] for undefined notation and terminology.

2. A characterization of 3-arc graphs

It is well known that line graphs can be characterized by a finite set of forbidden induced subgraphs [6]. In contrast, a similar characterization does not exist for 3-arcs graphs, as we show in the following result.

Proposition 1. There is no characterization of 3-arc graphs by a finite set of forbidden induced subgraphs. More specifically, any graph is isomorphic to an induced subgraph of some 3-arc graph.

Proof. Let H be any graph. Define H^{*} to be the graph obtained from H by adding a new vertex x and an edge joining x and each vertex of H. It is not hard see that $u, v \in V(H)$ are adjacent in H if and only if the arcs $u x, v x$ of H^{*} are adjacent in $X\left(H^{*}\right)$. Thus the subgraph of $X\left(H^{*}\right)$ induced by $A:=\{v x: v \in V(H)\} \subseteq V\left(X\left(H^{*}\right)\right)$ is isomorphic to H via the bijection $v \leftrightarrow v x$ between $V(H)$ and A. Since H is arbitrary, this means that any graph is isomorphic to an induced subgraph of some 3 -arc graph, and so the result follows.

Next we give a descriptive characterization of 3 -arc graphs. To avoid triviality we assume that the graph under consideration has at least one edge.

Theorem 2. A graph G having at least one edge is isomorphic to the 3-arc graph of some graph if and only if $V(G)$ admits a partition $\mathcal{V}:=\mathcal{V}_{1} \cup \mathcal{V}_{2}$ and $E(G)$ admits a partition \mathcal{E} such that the following holds:
(a) each element of \mathcal{V}_{1} contains exactly one vertex of G, and each element of \mathcal{V}_{2} is an independent set of G with at least two vertices;
(b) each $E_{i} \in \mathcal{E}$ induces a complete bipartite subgraph B_{i} of G with each part of the bipartition a subset of some $V \in \mathcal{V}_{2}$ with $|V|-1$ vertices;

https://daneshyari.com/en/article/418860

Download Persian Version:
https://daneshyari.com/article/418860

Daneshyari.com

[^0]: * Corresponding author at: School of Mathematics and Computing Science, Zunyi Normal College, Zunyi 563002, China.

 E-mail addresses: gjxu11@gmail.com (G. Xu), smzhou@ms.unimelb.edu.au (S. Zhou).

