Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Three-arc graphs: Characterization and domination

Guangjun Xu^{a,b,*}, Sanming Zhou^b

^a School of Mathematics and Computing Science, Zunyi Normal College, Zunyi 563002, China
^b School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

ARTICLE INFO

Article history: Received 25 February 2014 Received in revised form 12 April 2015 Accepted 21 April 2015 Available online 16 May 2015

Keywords: 3-arc graph Domination number Graph operation

1. Introduction

ABSTRACT

An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph *G* is defined to have vertices the arcs of *G* such that two arcs uv, xy are adjacent if and only if (v, u, x, y)is a 3-arc of *G*. In this paper we give a characterization of 3-arc graphs and obtain sharp upper bounds on the domination number of the 3-arc graph of a graph *G* in terms that of *G*. © 2015 Elsevier B.V. All rights reserved.

The 3-arc construction [11] is a relatively new graph operation that has been used in the classification or characterization of several families of arc-transitive graphs [5,7,11,12,21,22]. (A graph is arc-transitive if its automorphism group acts transitively on the set of oriented edges.) As noted in [8], although this operation was first introduced in the context of graph symmetry, it is also of interest for general (not necessarily arc-transitive) graphs, and many problems on this new operation remain unexplored. In this paper we give partial solutions to two problems posed in [8] regarding 3-arc graphs.

An *arc* of a graph *G* is an ordered pair of adjacent vertices. For adjacent vertices *u*, *v* of *G*, we use *uv* to denote the arc from *u* to *v*, $vu(\neq uv)$ the arc from *v* to *u*, and $\{u, v\}$ the edge between *u* and *v*. A 3-*arc* of *G* is a 4-tuple (v, u, x, y) of vertices, possibly with v = y, such that both (v, u, x) and (u, x, y) are paths of *G*. Let Δ be a set of 3-arcs of *G*. Suppose that Δ is *self-paired* in the sense that $(y, x, u, v) \in \Delta$ whenever $(v, u, x, y) \in \Delta$. Then the 3-*arc graph of G relative to* Δ , denoted by $X(G, \Delta)$, is defined [11] to be the (undirected) graph whose vertex set is the set of arcs of *G* such that two vertices corresponding to arcs *uv* and *xy* are adjacent if and only if $(v, u, x, y) \in \Delta$. In the context of graph symmetry, Δ is usually a self-paired orbit on the set of 3-arcs under the action of an automorphism group of *G*. In the case where Δ is the set of all 3-arcs of *G*, we call $X(G, \Delta)$ the 3-*arc graph* [9] of *G* and denote it by X(G).

The first study of 3-arc graphs of general graphs was conducted by Knor and Zhou in [9]. Among other things they proved that if *G* has vertex-connectivity $\kappa(G) \ge 3$ then its 3-arc graph has vertex-connectivity $\kappa(X(G)) \ge (\kappa(G) - 1)^2$, and if *G* is connected of minimum degree $\delta(G) \ge 3$ then the diameter diam(X(G)) of X(G) is equal to diam(G), diam(G) + 1 or diam(G) + 2. In [1], Balbuena, García-Vázquez and Montejano improved the bound on the vertex-connectivity by proving $\kappa(X(G)) \ge \min\{\kappa(G)(\delta(G) - 1), (\delta(G) - 1)^2\}$ for any connected graph *G* with $\delta(G) \ge 3$. They also proved [1] that for such a graph the edge-connectivity of X(G) satisfies $\lambda(X(G)) \ge (\delta(G) - 1)^2$, and they further gave a lower bound on the restricted edge-connectivity of X(G) in the case when *G* is 2-connected. In [8], Knor, Xu and Zhou studied the independence, domination and chromatic numbers of 3-arc graphs.

http://dx.doi.org/10.1016/j.dam.2015.04.019 0166-218X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: School of Mathematics and Computing Science, Zunyi Normal College, Zunyi 563002, China. *E-mail addresses:* gjxu11@gmail.com (G. Xu), smzhou@ms.unimelb.edu.au (S. Zhou).

In a recent paper [20] we obtained a necessary and sufficient condition [20, Theorem 1] for X(G) to be Hamiltonian. In particular, we proved [20, Theorem 2] that a 3-arc graph is Hamiltonian if and only if it is connected, and that if *G* is connected with $\delta(G) \ge 3$ then all its iterative 3-arc graphs $X^i(G)$ are Hamiltonian, $i \ge 1$. (The iterative 3-arc graphs are recursively defined by $X^1(G) := X(G)$ and $X^{i+1}(G) := X(X^i(G))$ for $i \ge 1$.) As a consequence we obtained [20, Corollary 2] that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This provides new support to the well-known Lovász–Thomassen conjecture [17] which asserts that all connected vertex-transitive graphs, with finitely many exceptions, are Hamiltonian. We also proved (as a consequence of a more general result) [20, Theorem 4] that if a graph *G* with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs $X^i(G)$, i > 1.

The 3-arc construction was generalized to directed graphs in [8]. Given a directed graph *D*, the 3-arc graph [8] of *D*, denoted by X(D), is defined to be the undirected graph whose vertex set is the set of arcs of *D* such that two vertices corresponding to arcs uv, xy of *D* are adjacent if and only if $v \neq x$, $y \neq u$ and u, x are adjacent in *D*. Recently, we proved with Wood [19] that the well-known Hadwiger's graph colouring conjecture [18] is true for the 3-arc graph of any directed graph with no loops.

In spite of the results above, compared with the well-known line graph operation [6] and the 2-path graph operation [3,10], our knowledge of 3-arc graphs is quite limited and many problems on them are yet to be explored. For instance, the following problems were posed in [8]:

Problem 1. Characterize 3-arc graphs of connected graphs.

Problem 2. Give a sharp upper bound on $\gamma(X(G))$ in terms of $\gamma(G)$ for any connected graph *G* with $\delta(G) \ge 2$, where γ denotes the domination number.

In this paper we give partial solutions to these problems. We first show that there is no forbidden subgraph characterization of 3-arc graphs (Proposition 1), and then we provide a descriptive characterization of 3-arc graphs (Theorem 2). We give a sharp upper bound for $\gamma(X(G))$ in terms of $\gamma(G)$ (Theorem 5) for any graph *G* with $\delta(G) \ge 2$, and more upper bounds for $\gamma(X(G))$ in terms of $\gamma(G)$ and the maximum degree $\Delta(G)$ when $2 \le \delta(G) \le 4$ (Theorem 6). Finally, we prove that if *G* is claw-free with $\delta(G) \ge 2$, then $\gamma(X(G)) \le 4\gamma(G)$ and moreover this bound is sharp (Theorem 7).

All graphs in the paper are finite and undirected with no loops or multiple edges. The *order* of a graph is the number of vertices in the graph. As usual, the minimum and maximum degrees of a graph G = (V(G), E(G)) are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The degree of a vertex $v \in V(G)$ in *G* is denoted by $\deg(v)$. The *neighbourhood* of v in *G*, denoted by N(v), is the set of vertices of *G* adjacent to v, and the *closed neighbourhood* of v is defined as $N[v] := N(v) \cup \{v\}$. We say that v dominates every vertex in N(v), or every vertex in N(v) is dominated by v. For a subset *S* of V(G), denote $N(S) := \bigcup_{v \in S} N(v)$ and $N[S] := N(S) \cup S$. We may add subscript *G* to these notations (e.g. $\deg_G(v)$) to indicate the underlying graph when there is a risk of confusion. If N[S] = V(G), then *S* is called a *dominating set* of *G*. The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*; a dominating set of *G* with cardinality $\gamma(G)$ is called a $\gamma(G)$ -set of *G*. The subgraph of *G* induced by *S* is denoted by *G*[*S*], and the subgraph of *G* induced by V(G) - S is denoted by G - S.

The reader is referred to [18] for undefined notation and terminology.

2. A characterization of 3-arc graphs

It is well known that line graphs can be characterized by a finite set of forbidden induced subgraphs [6]. In contrast, a similar characterization does not exist for 3-arcs graphs, as we show in the following result.

Proposition 1. There is no characterization of 3-arc graphs by a finite set of forbidden induced subgraphs. More specifically, any graph is isomorphic to an induced subgraph of some 3-arc graph.

Proof. Let *H* be any graph. Define H^* to be the graph obtained from *H* by adding a new vertex *x* and an edge joining *x* and each vertex of *H*. It is not hard see that $u, v \in V(H)$ are adjacent in *H* if and only if the arcs ux, vx of H^* are adjacent in $X(H^*)$. Thus the subgraph of $X(H^*)$ induced by $A := \{vx : v \in V(H)\} \subseteq V(X(H^*))$ is isomorphic to *H* via the bijection $v \leftrightarrow vx$ between V(H) and *A*. Since *H* is arbitrary, this means that any graph is isomorphic to an induced subgraph of some 3-arc graph, and so the result follows. \Box

Next we give a descriptive characterization of 3-arc graphs. To avoid triviality we assume that the graph under consideration has at least one edge.

Theorem 2. A graph *G* having at least one edge is isomorphic to the 3-arc graph of some graph if and only if V(G) admits a partition $\mathcal{V} := \mathcal{V}_1 \cup \mathcal{V}_2$ and E(G) admits a partition \mathcal{E} such that the following holds:

- (a) each element of V_1 contains exactly one vertex of *G*, and each element of V_2 is an independent set of *G* with at least two vertices;
- (b) each $E_i \in \mathcal{E}$ induces a complete bipartite subgraph B_i of G with each part of the bipartition a subset of some $V \in \mathcal{V}_2$ with |V| 1 vertices;

Download English Version:

https://daneshyari.com/en/article/418860

Download Persian Version:

https://daneshyari.com/article/418860

Daneshyari.com