
Discrete Applied Mathematics 165 (2014) 69–82

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Computing the differential of a graph: Hardness,
approximability and exact algorithms
S. Bermudo a, H. Fernau b,∗

a Department of Economy, Quantitative Methods and Economic History, Pablo de Olavide University, Carretera de Utrera Km. 1, 41013-Sevilla, Spain
b Fachbereich 4, Abteilung Informatik, Universität Trier, D-54286 Trier, Germany

a r t i c l e i n f o

Article history:
Received 3 November 2011
Received in revised form 22 June 2012
Accepted 23 November 2012
Available online 3 January 2013

Keywords:
Differential (of a graph)
Computational complexity
Algorithms for NP hard problems

a b s t r a c t

We are studying computational complexity aspects of the differential of a graph, a graph
parameter previously introduced to model ways of influencing a network. We obtain NP
hardness results also for very special graph classes, such as split graphs and cubic graphs.
Thismotivates to further classify this problem in terms of approximability. Here, one of our
results showsMAXSNP completeness for the correspondingmaximization problemon sub-
cubic graphs. Moreover, we also provide a Measure & Conquer analysis for an exact mod-
erately exponential-time algorithm that computes that graph parameter in time O(1.755n)
on a graph of order n.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction: definitions and simple properties

As explained in [3] in some detail, the differential of a graph can be seen as a simplified deterministicmodel of influencing
a network representing a social group, aiming atmaximizing the economic or political benefit of thosewhowant to influence
the network.
The central notions of the paper. We will use standard notions from graph theory throughout this paper. For instance, N(x)
denotes the set of vertices that are neighbors of the vertex x. Following [22], if D is a vertex set, then B(D) =


x∈D N(x)


\D

is the boundary of D, collecting only the proper neighbors of vertices from D. The differential of D is defined as1 ∂(D) =

|B(D)| − |D| and the differential of a graph Γ , written ∂(Γ ), is equal to max{∂(D):D ⊆ V }. A set D satisfying ∂(D) = ∂(Γ )
is also called a differential set, or ∂-set for short. If D has minimum cardinality among all ∂-sets, D is called a minimum
(cardinality) ∂-set. The graph parameter ∂ was introduced in [22], where several basic properties were derived. We also
refer to [3,4] and the literature quoted therein.

As explained in [22], the graph parameter ∂(Γ ) is related to the well-known parameter γ (Γ ) denoting the minimum
size of a dominating vertex set in Γ , via a parameter Ψ known as the enclaveless number of a graph, namely [8,26],

Ψ (Γ ) := max{|B(D)|:D ⊆ V } = n − γ (Γ ),

where n is the order of Γ = (V , E), i.e., n = |V |. For a set D with |B(D)| = Ψ (Γ ), B(D) is also known as a nonblocker set or
as an enclaveless set.

Recall that a graph consisting of one central vertex c and d neighbors that in turn have no further neighbors other than
c is also known as a star Sd = K1,d. If X = (V , E) is an Sd star with center c , then V \ {c} will be also called ray vertices and
the edges will be termed rays, in order to stay with the picture. We will call an Sd star big if d ≥ 2.
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1 For bipartite graphs, this notion was already considered in [21] under the name of the surplus of a vertex set.
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Given a set S ⊆ V and x ∈ S, we will say that y ∈ V \ S is a private neighbor of x (with respect to S) if there is no other
vertex x′

∈ S such that y is also a neighbor of x′.
Simple observations. An alternative way of defining the differential of a graph is shown in the following proposition. Given
a graph Γ = (V , E), a big star packing is given by a vertex-disjoint collection S = {Xi | 1 ≤ i ≤ k} of (not necessarily
induced) big stars Xi ⊆ V , i.e., Γ [Xi] contains some Sd with d = |Xi| − 1 ≥ 2. If S is a big star packing of Γ , we also denote
this property by S ∈ SP(Γ ).

Proposition 1.1 ([3]). ∂(Γ ) = max{


S∈S(|S| − 2): S ∈ SP(Γ )}.

The following structural observation is helpful in the following.

Lemma 1.2. (a) Every vertex in a ∂-set D of Γ has at least one private neighbor with respect to D.
(b) Every vertex in a minimum ∂-set D of Γ has at least two private neighbors with respect to D.

Proof. (a) Let D be a ∂-set. Assume that x ∈ D has no private neighbor. Then, D′
= D \ {x} satisfies B(D′) = B(D). Hence,

∂(D) < ∂(D′), contradicting that ∂(D) = ∂(Γ ).
(b) Let D be a minimum ∂-set. Assume that x ∈ D has only one private neighbor y ∉ D. Then, D′

= D \ {x} obeys
B(D′) = B(D) \ {y}. Hence, ∂(D) = ∂(D′), but |D′

| < |D|, contradicting the minimality of D. �

We collect some straightforward observations in the following remarks:

Remark 1.3. For a graph Γ of order n, 0 ≤ ∂(Γ ) ≤ n − 2. The lower bound is attained, e.g., for a collection of independent
edges, and the upper bound is attained by the star Sn−1.

Remark 1.4. If Γ has connected components Γ1, . . . , Γk, then ∂(Γ ) = ∂(Γ1) + · · · + ∂(Γk).

It is often important to know the values of a graph parameter for special graphs. The next result gives the differential of
paths and cycles.

Proposition 1.5 ([22]). For paths Pn, n ≥ 1 and cycles Cn, n ≥ 3, ∂(Cn) = ∂(Pn) =
 n

3


.

Due to Remark 1.4 in combination with Proposition 1.5, it is easy to compute the differential of a graph with a maximum
degree of two.

Proposition 1.6. In a graph Γ of maximum degree (at most) two, ∂(Γ ) can be computed in polynomial time.

The (easy) reasoning of the preceding proposition motivates why we will, often without saying, mostly consider
connected graphs throughout this paper.

As we will show in this paper, the complexity picture changes if we ask to determine ∂(Γ ) for (sub)cubic or for split
graphs Γ . This is interesting, as several graph parameters are computable in polynomial time on (sub)cubic or split graphs,
although they are NP hard on general graphs, see [27,33].
Our main results. We derive in this paper two types of results: (1) We show computational hardness of the problem and
several variants, especially restrictions to special graph classes. (2) We propose several algorithms for computing (approxi-
mations of) the differential of a graph. These results are placed into three different contexts, and this also provides the section
structure of the paper. In Section 2, we study classical complexity questions and show that it is NP complete to decide, given
a graph Γ and an integer k, whether ∂(Γ ) ≥ k is true or not. This results also holds for split graphs and for cubic graphs.
Section 3 is devoted to the study of (non-)approximability of the corresponding maximization problem. Among other re-
sults, we showMAXSNP completeness of this problem for (sub-)cubic graphs.We also obtain similar results for the problem
of deciding whether Ψ (Γ ) ≥ k. In Section 4, we propose an exact algorithm for computing the differential of a graph. The
running time has been analyzed by theMeasure & Conquer paradigm, see [16]. As explained above, the graph parameter ∂ is
related to domination, so that this exact algorithmnicely fits into the line of exact algorithms for domination-type problems;
we only mention some of them in the following: [5,10,13,15,14,6,29,30,28,25].

2. Complexity of the differential of a graph

Given a graph Γ = (V , E) and an integer k, we consider the following decision problem: Is ∂(Γ ) ≥ k? We refer to this
problem as k-Differential Set (k-DS). A derived problem, called Minimum Cardinality Maximum Differential Set (MMDS), is to
determine if there is a set Dwith ∂(D) = ∂(Γ ), |D| ≤ l and ∂(D) ≥ k, where k, l are two given parameters.2

Wewill prove that the two problems (k-DSMMDS) are NP complete in twowell known (small) graph classes, split graphs
and cubic graphs. Notice that the latter result is best possible in the sense that further restrictions on the degree would lead
to graph classes where k-DS can be solved in polynomial time, as already mentioned in Proposition 1.6.

2 We prefer to keep this more descriptive naming over the possibly more consequent denotation (l, k)-DS.
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