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inaline graph H with n nodes. The best algorithm known to date to solve the latter problem
is Gabow’s maximum weight matching algorithm (applied to the root graph of H) which has
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1. Introduction

A Matching in a graph G(V, E) is a family of pairwise node-disjoint edges. If G is an edge-weighted graph, the Maximum
Weight Matching Problem (MWMP) asks for a matching with maximum total weight. Since Edmonds seminal paper [3]
featuring the blossom’s shrinking technique, many polynomial algorithms of increasing ingenuity and decreasing complexity
have been proposed in the literature, both for the weighted and the unweighted case [14].

The Maximum Weight Stable Set Problem (MWSSP) in a graph G(V, E) with node-weight function w : V — N asks for a
maximum weight subset of pairwise non-adjacent nodes. The Maximum Weight Matching Problem is a special case of the
Maximum Weight Stable Set Problem. In fact, the latter can be transformed into the former in a very specific class of graphs:
the line graphs. The line graph of a graph G(V, E) is the graph L(G) with node set E and an edge ef for each pair {e, f} of edges
of E incident to the same node. A graph G is a line graph if and only if there exists a graph H (the root graph of G) with the
property that L(H) = G.

Evidently, M is a matching in G if and only if the nodes corresponding to the edges of M define a stable set in L(G). This
implies that the crucial optimality condition for the weighted matching problem based on the concept of alternating path
(cycle) can be extended to line graphs and that the Maximum Weight Stable Set Problem, which is NP-Hard on general
graphs, can be solved in polynomial time if G is a line graph.

Indeed one can do more [1], and extend the augmenting path condition to a class of graphs that properly contains line
graphs: the claw-free graphs. A graph G(V, E) is claw-free if no vertex v € V has three mutually non-adjacent nodes in its
neighborhood. Berge observed that the optimality condition that holds for matchings in any graph can be extended to stable
sets in claw-free graphs. In particular, by letting w(T) = ), .y w(v) (Where T C V) we have that a stable set S in a claw-free
graph has maximum weight if and only if there does not exist an alternating path (cycle) P in G with w(P\S) —w(PNS) > 0.
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In 1980, building upon the augmenting path condition, Minty [11] proposed a @(|V|®) algorithm to find a maximum
weight stable set in a claw-free graph. Minty’s crucial idea was that of defining a new map (different from the line transfor-
mation L(G)) from the node-weighted graph G to an edge-weighted graph H with the property that a stable set has maxi-
mum (node) weight in G if and only if a suitable matching has maximum (edge) weight in H. For more than twenty years
and despite the great interest surrounding the stable set problem in claw-free graphs, no algorithm better than Minty’s was
proposed. In 1993 Pulleyblank-Shepherd [13] proposed a © (|V|*) algorithm for the MWSSP in distance claw-free graphs. In
2001 Nakamura and Tamura observed that Minty’s algorithm had a minor flaw in its construction and proposed a simple
way to fix it [12]. Subsequently, Schrijver [14], elaborating on Minty’s approach, proposed an elegant alternative using a
slightly different edge-weighted auxiliary graph H. A fresh interest in the algorithmic issues concerning claw-free graphs
was brought forward by the deep structural description of this class of graphs proposed by Chudnovsky and Seymour [2].
Inspired by those results, Faenza, Oriolo, Pietropaoli and Stauffer [4], using an entirely new approach, have recently pro-
posed a ©(|V|*) decomposition algorithm and, more recently, an astonishing @ (|V|*) update to the latter result has been
proposed by Faenza, Oriolo and Stauffer [5].

This paper tries to combine the basic ideas of Minty’s algorithm with a fundamental structural result proved by Lovasz
and Plummer [10]: the clique reduction. More specifically, after showing, in the spirit of Minty, that the quest for a maximum
weight augmenting path in a claw-free graph can be restricted to a subgraph of G (the augmenting subgraph), we prove that
the augmenting subgraph can be, in turn, reduced to a line graph by repeatedly applying Lovasz-Plummer reduction (appro-
priately extended to cope with the weighted case). As a consequence we are able to find a maximum weight augmenting
pathin G in @ (n? 4 £(n)) time, where .£(n) is the complexity of finding a maximum weight augmenting path in a line graph
with n nodes.

The main result is eventually achieved by proving that @ (n?) maximum weight augmenting paths have to be computed
in order to find a maximum weight stable set in a claw-free graph G.

For each graph G(V, E) we denote by E¢(U) the edges of G with endnodes in U C V, by G[U] the subgraph of G induced
by U and by Ng(U) the set of nodes in V \ U adjacent in G to some node in U. If U = {u} we simply write N¢(u). We denote by
Ng[U] and Ng[u] the sets Ng(U) U U and N¢(u) U {u}. Moreover, we denote by Né(U) and Né(u) the sets Ng(Ng(U)) \ U and
Ng(Ng(u)) \ {u}. When no confusion arises we omit the subscripts and write E(U), N(U), N(u), N[U], N[u], N?(U), N?>(u). To
simplify the notation, we denote an edge (u, v) € E also as uv. A clique is a set of nodes which induces a complete subgraph
of G. The symmetric difference (U \ V) U (V \ U) of two sets U, V is denoted by UAV. To highlight its structure, a claw induced
by a node u adjacent to three nodes x, y, z mutually non adjacent is denoted as (u : x, y, z). A P is a (chordless) path induced
by k nodes and will be denoted as (uq, ..., uy). Anode u € V is said to be complete (respectively anti-complete) to a subset
U C VifU C N(u) (respectively U N N(u) = ¢).

A graph is a line graph if and only if there exists a family of cliques (Krausz partition) covering all of its edges and with the
property that every node belongs to exactly two cliques of the family (Krausz [8]; see also [10], exercise 12.4.2). A graph is
quasi-line if the neighborhood of each node can be covered by two cliques. Each line-graph is a quasi-line graph and each
quasi-line graph is a claw-free graph. A 5-wheel W5 = (v; vg, v1, V2, U3, V4) is a graph consisting of a 5-hole R = {vy, vy,
vy, U3, v4} called rim of W5 and the node v (hub of Ws) adjacent to every node of R.

In the rest of this paper we tacitly assume that every graph G(V, E) has |V| = n, |E| = m and is claw-free. Moreover, in
what follows we will consider special subgraphs of G (paths, cycles, wheels, cliques, etc.) both as graphs and subsets of V.
Hence, for example, if P is a path in G and v a node in P, we also use the shorthand notation v € P C V.IfS is a stable set of
G(V, E) then any node v € V \ S satisfies |[N(v) N S| < 2 and is called superfree if [IN(v) N S| = 0, free if IN(v) N S| = 1 and
bound if  N(v) N S| = 2.

Following Minty, we call wing of {s, t} C S, S stable set, the set W(s, t) = {u € V\S : N(u)NS = {s, t}}. The nodes s and
t are said to be the extrema of the wing. By claw-freeness (W (s, t)) < 2; if a (W (s, t)) = 1 the wing W (s, t) is said to be
a clique-wing. An x-y-alternating path with respect to S is an induced path P = {x, ..., y} whose nodes alternate between S
and V\S and x (y) is free or belongs to S. Evidently, if P is an alternating path, then the set S’ = (S\P)U(P\S) is a stable set in
G. An x-y-alternating path P such that x and y are both free is an x-y-augmenting path. The value A,,(P) = w(P\S) —w(PNS)
is said to be the weight of P.

2. Reducible and strongly reducible cliques

In this section we shall assume that S is a maximal stable set of a claw-free graph G(V, E). A maximal clique Q is reducible
ife(N(Q)) < 2.Two non-adjacent nodes u, v € N(Q) are distant (with respect to Q) if N(u) N N(v) N Q = @. A (maximal)
clique is normal if it has three neighbors that are mutually distant. In [10] Lovasz and Plummer defined the reduction of a
reducible clique and proved that it preserves claw-freeness. Moreover, they proved the following crucial results:

Theorem 1. If G(V, E) is a claw-free graph that does not contain an induced 5-wheel, one has:

(i) two independent neighbors of a normal clique of G are distant;

(ii) ifanode v € V is contained in two different irreducible cliques Q; and Q, and Q; U Q, D N(v) then Q; and Q, are normal;
(iii) if v € V is contained in two different normal cliques Q, and Q, then N(v) € Q; U Q;

(iv) ifeachnode v € V is contained in two different irreducible cliques Q; and Q; and N(v) = Q;UQ;, then Gisaline graph. 0O
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