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a b s t r a c t

An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the
colors of edges incident to any vertex ofG are distinct and the sumof the colors of the edges
of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges
in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic
sum of an r-regular (r ≥ 3) graph is NP-complete. In this paper we give a polynomial time
1 +

2r
(r+1)2


-approximation algorithm for the edge-chromatic sum problem on r-regular

graphs for r ≥ 3. Also, it is known that the problem of finding the edge-chromatic sum
of bipartite graphs with maximum degree 3 is NP-complete. We show that the problem
remains NP-complete even for some restricted class of bipartite graphs with maximum
degree 3. Finally, we give upper bounds for the edge-chromatic sum of some split graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite undirected graphs that do not contain loops or multiple edges. Let V (G) and E(G) denote sets of
vertices and edges of G, respectively. For S ⊆ V (G), let G[S] denote the subgraph of G induced by S, that is, V (G[S]) = S and
E(G[S]) consists of those edges of E(G) for which both ends are in S. The degree of a vertex v ∈ V (G) is denoted by dG(v),
the maximum degree of G by ∆(G), the chromatic number of G by χ(G), and the chromatic index of G by χ ′(G). The terms
and concepts that we do not define can be found in [2,26].

A proper vertex-coloring of a graph G is a mapping α : V (G) → N such that α(u) ≠ α(v) for every uv ∈ E(G). If α is a
proper vertex-coloring of a graph G, thenΣ(G, α) denotes the sum of the colors of the vertices of G. For a graph G, define the
vertex-chromatic sum Σ(G) as follows: Σ(G) = minα Σ(G, α), where minimum is taken among all possible proper vertex-
colorings of G. If α is a proper vertex-coloring of a graph G and Σ(G) = Σ(G, α), then α is called a sum vertex-coloring. The
strength of a graph G (s(G)) is the minimum number of colors needed for a sum vertex-coloring of G. The concept of sum
vertex-coloring and vertex-chromatic sumwas introduced by Kubicka [16] and Supowit [22]. In [18], Kubicka and Schwenk
showed that the problem of finding the vertex-chromatic sum is NP-complete in general and polynomial time solvable for
trees. Jansen [12] gave a dynamic programming algorithm for partial k-trees. In papers [5,6,9,13,17], some approximation
algorithmswere given for various classes of graphs. For the strength of graphs, Brook’s-type theoremwas proved in [11]. On
the other hand, there are graphs with s(G) > χ(G) [8]. Some bounds for the vertex-chromatic sum of a graph were given
in [23].

Similar to the sum vertex-coloring and vertex-chromatic sum of graphs, in [5,10,11], sum edge-coloring and edge-
chromatic sum of graphs were introduced. A proper edge-coloring of a graph G is a mapping α : E(G) → N such that α(e) ≠

α(e′) for every pair of adjacent edges e, e′
∈ E(G). If α is a proper edge-coloring of a graph G, then Σ ′(G, α) denotes
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the sum of the colors of the edges of G. For a graph G, define the edge-chromatic sum Σ ′(G) as follows: Σ ′(G) =

minα Σ ′(G, α), where minimum is taken among all possible proper edge-colorings of G. If α is a proper edge-coloring of
a graph G and Σ ′(G) = Σ ′(G, α), then α is called a sum edge-coloring. The edge-strength of a graph G (s′(G)) is the
minimum number of colors needed for a sum edge-coloring of G. For the edge-strength of graphs, Vizing’s-type theo-
rem was proved in [11]. In [5], Bar-Noy et al. proved that the problem of finding the edge-chromatic sum is NP-hard for
multigraphs. Later, in [10], it was shown that the problem is NP-complete for bipartite graphs with maximum degree 3.
Also, in [10], the authors proved that the problem can be solved in polynomial time for trees and that s′(G) = χ ′(G) for
bipartite graphs. In [20], Salavatipour proved that the problem of determining the edge-chromatic sum and the prob-
lem of determining the edge-strength are both NP-complete for r-regular graphs with r ≥ 3. Also he proved that
s′(G) = χ ′(G) for regular graphs. On the other hand, there are graphs with χ ′(G) = ∆(G) and s′(G) = ∆(G) + 1 [11].
Recently, Cardinal et al. [7] determined the edge-strength of the multicycles.

In the present paper we give a polynomial time 11
8 -approximation algorithm for the edge-chromatic sum problem of

r-regular graphs for r ≥ 3. Next, we show that the problem of finding the edge-chromatic sum remains NP-complete even
for some restricted class of bipartite graphs with maximum degree 3. Finally, we give upper bounds for the edge-chromatic
sum of some split graphs.

2. Definitions and preliminary results

A proper t-coloring is a proper edge-coloring which makes use of t different colors. If α is a proper t-coloring of G and
v ∈ V (G), then S (v, α) denotes the set of colors appearing on edges incident to v. Let G be a graph and R ⊆ V (G). A proper
t-coloring of a graph G is called an R-sequential t-coloring [1,3] if the edges incident to each vertex v ∈ R are colored by the
colors 1, . . . , dG(v). For positive integers a and b, we denote by [a, b], the set of all positive integers c with a ≤ c ≤ b. For a
positive integer n, let Kn denote the complete graph on n vertices.

We will use the following four results.

Theorem 1 ([15]). If G is a bipartite graph, then χ ′(G) = ∆(G).

Theorem 2 ([24]). For every graph G,

∆(G) ≤ χ ′(G) ≤ ∆(G) + 1.

Theorem 3 ([25]). For the complete graph Kn with n ≥ 2,

χ ′(Kn) =


n − 1, if n is even,
n, if n is odd.

Theorem 4 ([10,11]). If G is a bipartite or a regular graph, then s′(G) = χ ′(G).

We also need one result on the edge-chromatic sum of complete graphs with shifted colors. First we give a definition of
the shifted edge-chromatic sum. If α is a proper t-coloring of a graph G with colors [p, p + t − 1], then Σ ′

≥p(G, α) denotes
the sum of the colors of the edges of G. For a graph G and p ∈ N, define the shifted edge-chromatic sum Σ ′

≥p(G) as follows:
Σ ′

≥p(G) = minα Σ ′
≥p(G, α), whereminimum is taken among all possible proper edge-colorings ofGwith colors p, p+1, . . . .

The theorem we are going to prove will be used in Section 5.

Theorem 5. For any n, p ∈ N, we have

Σ ′

≥p(Kn) =


n(n − 1)(2p + n − 1)

4
, if n is odd,

n(n − 1)(2p + n − 2)
4

, if n is even.

Proof. Since for any r-regular graph G with n vertices, Σ ′(G) =
nr(r+1)

4 if and only if χ ′(G) = r and, by Theorems 3 and 4,
we obtain Σ ′

≥p(Kn) =
n(p+p+1+···+p+n−2)

2 =
n(n−1)(2p+n−2)

4 if n is even.
Now let n be an odd number and n ≥ 3. In this case by Theorems 3 and 4, we have s′(Kn) = χ ′(Kn) = n. It is easy to see

that in any proper n-coloring of Kn the missing colors at n vertices are all distinct. Hence,

Σ ′

≥p(Kn) =

n2(2p+n−1)
2 −

n(2p+n−1)
2

2
=

n(n − 1)(2p + n − 1)
4

. �

Corollary 6. For any n ∈ N, we have

Σ ′(Kn) =


n(n2

− 1)
4

, if n is odd,

(n − 1)n2

4
, if n is even.
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