On sum edge-coloring of regular, bipartite and split graphs

P.A. Petrosyan ${ }^{\text {a,b,* }, ~ R . R . ~ K a m a l i a n ~}{ }^{\text {a,c }}$
${ }^{\text {a }}$ Institute for Informatics and Automation Problems, National Academy of Sciences, 0014, Armenia
${ }^{\mathrm{b}}$ Department of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia
${ }^{\text {c }}$ Department of Applied Mathematics and Informatics, Russian-Armenian State University, 0051, Armenia

A R TICLE INFO

Article history:

Received 30 November 2011
Received in revised form 16 August 2013
Accepted 27 September 2013
Available online 21 October 2013

Keywords:

Edge-coloring
Sum edge-coloring
Regular graph
Bipartite graph
Split graph

Abstract

An edge-coloring of a graph G with natural numbers is called a sum edge-coloring if the colors of edges incident to any vertex of G are distinct and the sum of the colors of the edges of G is minimum. The edge-chromatic sum of a graph G is the sum of the colors of edges in a sum edge-coloring of G. It is known that the problem of finding the edge-chromatic sum of an r-regular ($r \geq 3$) graph is NP-complete. In this paper we give a polynomial time $\left(1+\frac{2 r}{(r+1)^{2}}\right)$-approximation algorithm for the edge-chromatic sum problem on r-regular graphs for $r \geq 3$. Also, it is known that the problem of finding the edge-chromatic sum of bipartite graphs with maximum degree 3 is $N P$-complete. We show that the problem remains $N P$-complete even for some restricted class of bipartite graphs with maximum degree 3. Finally, we give upper bounds for the edge-chromatic sum of some split graphs. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite undirected graphs that do not contain loops or multiple edges. Let $V(G)$ and $E(G)$ denote sets of vertices and edges of G, respectively. For $S \subseteq V(G)$, let $G[S]$ denote the subgraph of G induced by S, that is, $V(G[S])=S$ and $E(G[S])$ consists of those edges of $E(G)$ for which both ends are in S. The degree of a vertex $v \in V(G)$ is denoted by $d_{G}(v)$, the maximum degree of G by $\Delta(G)$, the chromatic number of G by $\chi(G)$, and the chromatic index of G by $\chi^{\prime}(G)$. The terms and concepts that we do not define can be found in $[2,26]$.

A proper vertex-coloring of a graph G is a mapping $\alpha: V(G) \rightarrow \mathbf{N}$ such that $\alpha(u) \neq \alpha(v)$ for every $u v \in E(G)$. If α is a proper vertex-coloring of a graph G, then $\Sigma(G, \alpha)$ denotes the sum of the colors of the vertices of G. For a graph G, define the vertex-chromatic sum $\Sigma(G)$ as follows: $\Sigma(G)=\min _{\alpha} \Sigma(G, \alpha)$, where minimum is taken among all possible proper vertexcolorings of G. If α is a proper vertex-coloring of a graph G and $\Sigma(G)=\Sigma(G, \alpha)$, then α is called a sum vertex-coloring. The strength of a graph $G(s(G))$ is the minimum number of colors needed for a sum vertex-coloring of G. The concept of sum vertex-coloring and vertex-chromatic sum was introduced by Kubicka [16] and Supowit [22]. In [18], Kubicka and Schwenk showed that the problem of finding the vertex-chromatic sum is $N P$-complete in general and polynomial time solvable for trees. Jansen [12] gave a dynamic programming algorithm for partial k-trees. In papers [5,6,9,13,17], some approximation algorithms were given for various classes of graphs. For the strength of graphs, Brook's-type theorem was proved in [11]. On the other hand, there are graphs with $s(G)>\chi(G)$ [8]. Some bounds for the vertex-chromatic sum of a graph were given in [23].

Similar to the sum vertex-coloring and vertex-chromatic sum of graphs, in $[5,10,11]$, sum edge-coloring and edgechromatic sum of graphs were introduced. A proper edge-coloring of a graph G is a mapping $\alpha: E(G) \rightarrow \mathbf{N}$ such that $\alpha(e) \neq$ $\alpha\left(e^{\prime}\right)$ for every pair of adjacent edges $e, e^{\prime} \in E(G)$. If α is a proper edge-coloring of a graph G, then $\Sigma^{\prime}(G, \alpha)$ denotes

[^0]the sum of the colors of the edges of G. For a graph G, define the edge-chromatic sum $\Sigma^{\prime}(G)$ as follows: $\Sigma^{\prime}(G)=$ $\min _{\alpha} \Sigma^{\prime}(G, \alpha)$, where minimum is taken among all possible proper edge-colorings of G. If α is a proper edge-coloring of a graph G and $\Sigma^{\prime}(G)=\Sigma^{\prime}(G, \alpha)$, then α is called a sum edge-coloring. The edge-strength of a graph $G\left(s^{\prime}(G)\right)$ is the minimum number of colors needed for a sum edge-coloring of G. For the edge-strength of graphs, Vizing's-type theorem was proved in [11]. In [5], Bar-Noy et al. proved that the problem of finding the edge-chromatic sum is NP-hard for multigraphs. Later, in [10], it was shown that the problem is NP-complete for bipartite graphs with maximum degree 3. Also, in [10], the authors proved that the problem can be solved in polynomial time for trees and that $s^{\prime}(G)=\chi^{\prime}(G)$ for bipartite graphs. In [20], Salavatipour proved that the problem of determining the edge-chromatic sum and the problem of determining the edge-strength are both $N P$-complete for r-regular graphs with $r \geq 3$. Also he proved that $s^{\prime}(G)=\chi^{\prime}(G)$ for regular graphs. On the other hand, there are graphs with $\chi^{\prime}(G)=\Delta(G)$ and $s^{\prime}(G)=\Delta(G)+1[11]$. Recently, Cardinal et al. [7] determined the edge-strength of the multicycles.

In the present paper we give a polynomial time $\frac{11}{8}$-approximation algorithm for the edge-chromatic sum problem of r-regular graphs for $r \geq 3$. Next, we show that the problem of finding the edge-chromatic sum remains $N P$-complete even for some restricted class of bipartite graphs with maximum degree 3 . Finally, we give upper bounds for the edge-chromatic sum of some split graphs.

2. Definitions and preliminary results

A proper t-coloring is a proper edge-coloring which makes use of t different colors. If α is a proper t-coloring of G and $v \in V(G)$, then $S(v, \alpha)$ denotes the set of colors appearing on edges incident to v. Let G be a graph and $R \subseteq V(G)$. A proper t-coloring of a graph G is called an R-sequential t-coloring [1,3] if the edges incident to each vertex $v \in R$ are colored by the colors $1, \ldots, d_{G}(v)$. For positive integers a and b, we denote by $[a, b]$, the set of all positive integers c with $a \leq c \leq b$. For a positive integer n, let K_{n} denote the complete graph on n vertices.

We will use the following four results.
Theorem 1 ([15]). If G is a bipartite graph, then $\chi^{\prime}(G)=\Delta(G)$.
Theorem 2 ([24]). For every graph G,

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

Theorem 3 ([25]). For the complete graph K_{n} with $n \geq 2$,

$$
\chi^{\prime}\left(K_{n}\right)= \begin{cases}n-1, & \text { if } n \text { is even } \\ n, & \text { if } n \text { is odd }\end{cases}
$$

Theorem 4 ([10,11]). If G is a bipartite or a regular graph, then $s^{\prime}(G)=\chi^{\prime}(G)$.
We also need one result on the edge-chromatic sum of complete graphs with shifted colors. First we give a definition of the shifted edge-chromatic sum. If α is a proper t-coloring of a graph G with colors $[p, p+t-1]$, then $\Sigma_{\geq p}^{\prime}(G, \alpha)$ denotes the sum of the colors of the edges of G. For a graph G and $p \in \mathbf{N}$, define the shifted edge-chromatic sum $\Sigma_{\geq p}^{\prime}(G)$ as follows: $\Sigma_{\geq p}^{\prime}(G)=\min _{\alpha} \Sigma_{\geq p}^{\prime}(G, \alpha)$, where minimum is taken among all possible proper edge-colorings of G with colors $p, p+1, \ldots$ The theorem we are going to prove will be used in Section 5.
Theorem 5. For any $n, p \in \mathbf{N}$, we have

$$
\Sigma_{\geq p}^{\prime}\left(K_{n}\right)= \begin{cases}\frac{n(n-1)(2 p+n-1)}{4}, & \text { if } n \text { is odd } \\ \frac{n(n-1)(2 p+n-2)}{4}, & \text { if } n \text { is even. }\end{cases}
$$

Proof. Since for any r-regular graph G with n vertices, $\Sigma^{\prime}(G)=\frac{n r(r+1)}{4}$ if and only if $\chi^{\prime}(G)=r$ and, by Theorems 3 and 4, we obtain $\Sigma_{\geq p}^{\prime}\left(K_{n}\right)=\frac{n(p+p+1+\cdots+p+n-2)}{2}=\frac{n(n-1)(2 p+n-2)}{4}$ if n is even.

Now let n be an odd number and $n \geq 3$. In this case by Theorems 3 and 4 , we have $s^{\prime}\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n$. It is easy to see that in any proper n-coloring of K_{n} the missing colors at n vertices are all distinct. Hence,

$$
\Sigma_{\geq p}^{\prime}\left(K_{n}\right)=\frac{\frac{n^{2}(2 p+n-1)}{2}-\frac{n(2 p+n-1)}{2}}{2}=\frac{n(n-1)(2 p+n-1)}{4} .
$$

Corollary 6. For any $n \in \mathbf{N}$, we have

$$
\Sigma^{\prime}\left(K_{n}\right)= \begin{cases}\frac{n\left(n^{2}-1\right)}{4}, & \text { if } n \text { is odd } \\ \frac{(n-1) n^{2}}{4}, & \text { if } n \text { is even. }\end{cases}
$$

https://daneshyari.com/en/article/418885

Download Persian Version:

https://daneshyari.com/article/418885

Daneshyari.com

[^0]: * Corresponding author at: Institute for Informatics and Automation Problems, National Academy of Sciences, 0014, Armenia. Tel.: +374 932729 32; fax: +374 10554641.

 E-mail addresses: pet_petros@ipia.sci.am, pet_petros@ysu.am, pet_petros@yahoo.com (P.A. Petrosyan), rrkamalian@yahoo.com (R.R. Kamalian).

