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a b s t r a c t

A graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques
equals the minimum number of vertices intersecting all maximal cliques for each induced
subgraph. In this work, we give necessary and sufficient conditions for the complement of
a line graph to be clique-perfect and an O(n2)-time algorithm to recognize such graphs.
These results follow from a characterization and a linear-time recognition algorithm for
matching-perfect graphs, which we introduce as graphs where the maximum number of
pairwise edge-disjoint maximal matchings equals the minimum number of edges inter-
secting all maximal matchings for each subgraph. Thereby, we completely describe the lin-
ear and circular structure of the graphs containing no bipartite claw, fromwhich we derive
a structure theorem for all those graphs containing no bipartite claw that are Class 2 with
respect to edge-coloring.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Numerous major theorems in combinatorics are formulated in terms of min–max relations of dual graph parameters.
Perfect graphswere defined by Berge in terms of amin–max inequality involving clique and chromatic number. The chro-

matic number χ(G) of a graph G is the minimum number of colors needed to assign different colors to adjacent vertices of G.
Themaximum size of a clique in G is its clique number ω(G). Clearly, themin–max type inequalityω(G) ≤ χ(G) holds for ev-
ery graphG. Berge [3] called a graphG perfect if and only if the equalityω(H) = χ(H) holds for each induced subgraphH ofG.

An important result about perfect graphs is the Perfect Graph Theorem which states that the complement of a perfect
graph is also perfect [29,40]. Thus, a graph G is perfect if and only if clique and chromatic number coincide for each induced
subgraph of its complement G. The clique number of G is the stability number α(G), which is the maximum number of pair-
wise nonadjacent vertices ofG. The chromatic number ofG is the clique covering number θ(G), which is theminimumnumber
of cliques of G covering all its vertices. Hence, the min–max type inequality α(G) ≤ θ(G) holds for every graph G and, by
virtue of the Perfect Graph Theorem, a graph G is perfect if and only if α(H) = θ(H) holds for each induced subgraph H of G.

A hole or antihole in a graphG is an induced subgraph isomorphic to the chordless cycle on k vertices Ck or its complement
Ck, respectively, for some k ≥ 5. If k is odd, then the hole or antihole is odd; otherwise it is even. Berge [3] conjectured that a
graph is perfect if and only if it has no odd holes and no odd antiholes. This conjecture was proved to be true about 40 years
later and is now known as the Strong Perfect Graph Theorem [19].
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Fig. 1. Some small graphs. The circled vertex is the center of the bipartite claw.

Theorem 1.1 (Strong Perfect Graph Theorem [19]). A graph is perfect if and only if it has no odd holes and no odd antiholes.

A polynomial-time recognition algorithm for perfect graphs was given in [18].
The class of clique-perfect graphs is defined by requiring equality in amin–max type inequality related to the Kőnig prop-

erty of the family of maximal cliques. Consider a family F of nonempty subsets of a finite ground set X , then the transversal
number τ(F ) is the minimum number of elements of X needed to intersect every member of F and the matching number
ν(F ) of F is the maximum size of a collection of pairwise disjoint members of F . If these two numbers coincide, the family
F is said to have the Kőnig property [4].

Let Q be the family of all maximal cliques of G. A collection of pairwise disjoint maximal cliques of a graph is a clique-
independent set and a vertex set intersecting everymaximal clique of a graph is a clique-transversal. Accordingly, we call ν(Q)
the clique-independence number αc(G) and τ(Q) the clique-transversal number τc(G). Clearly, the min–max type inequality
αc(G) ≤ τc(G) holds for every graph G. A graph G is clique-perfect [30] if αc(H) = τc(H) holds for each induced subgraph
H of G. In other words, a graph G is clique-perfect if and only if, for each induced subgraph of G, the family of all maximal
cliques has the Kőnig property.

The Kőnig property has its origins in the study of matchings and transversals in bipartite graphs. The matching number
ν(G) of a graph G is the maximum size of a matching (a set of vertex-disjoint edges) and the transversal number τ(G) is the
minimum size of a vertex cover (a set of vertices intersecting every edge). Clearly, themin–max type inequality ν(G) ≤ τ(G)
holds for every graph G. In 1931, Kőnig [36] and Egerváry [27] proved that every bipartite graph B satisfies ν(B) = τ(B). This
result is now known as the Kőnig–Egerváry Theorem. Notice that if B is bipartite, then αc(B) = ν(B)+ i(B) and τc(B) = τ(B)+
i(B) where i(B) denotes the number of isolated vertices of B; consequently, αc(B) = τc(B) if and only if ν(B) = τ(B). There-
fore, since each induced subgraph of a bipartite graph is also bipartite, the Kőnig–Egerváry Theoremcan be restated by saying
that every bipartite graph is clique-perfect. Apart from bipartite graphs, some other graph classes are known to be clique-
perfect: comparability graphs [1], balanced graphs [5], complements of forests [7], and distance-hereditary graphs [37].

It is important to mention that not all clique-perfect graphs are perfect and that not all perfect graphs are clique-perfect.
For instance, the even antihole C6k+2 is perfect but not clique-perfect, whereas the odd antihole C6k+3 is clique-perfect but
not perfect, for each k ≥ 1. In fact, we have:

Theorem 1.2 ([26,30]). A hole Cn is clique-perfect if and only if n is even. An antihole Cn is clique-perfect if and only if n is a
multiple of 3.

Notice also that if the equality αc(G) = τc(G) holds for a graph G, then the same equality may not hold for all its induced
subgraphs. For instance, every graph G in the class of dually chordal graphs [14] satisfies the equality αc(G) = τc(G), but
dually chordal graphs are not clique-perfect in general; e.g., the 5-wheel (the graph that arises from C5 by adding a vertex
adjacent to every other vertex) is dually chordal but it is not clique-perfect because it contains an induced C5, for which
αc(C5) = 2 but τc(C5) = 3.

Unlike perfect graphs, the class of clique-perfect graphs is not closed under graph complementation; e.g., the net and the
3-sun (see Fig. 1) are complement graphs of each other such that the former is clique-perfect but the latter is not clique-
perfect.Moreover, a complete characterization of clique-perfect graphs by forbidden induced subgraphs is not known either.
Another open question regarding clique-perfect graphs is the computational complexity of their recognition problem. Nev-
ertheless, some partial results in this direction appeared in [8,9,11,38], where necessary and sufficient conditions for a graph
G to be clique-perfect in terms of forbidden induced subgraphs as well as polynomial-time algorithms for deciding whether
a given graph G is clique-perfect were found when restricting G to belong to one of several different graph classes. Interest-
ingly, the problems of determining αc(G) and τc(G) are both NP-hard even if G is a split graph [17] and determining τc(G)
is NP-hard even if G is a triangle-free graph [28]. More NP-hardness results of this type for αc and τc were proved in [30].
Some polynomial-time algorithms for determining αc(G) and τc(G) when G belongs to one of several different graph classes
were devised in [1,13,17,22,24–26,30,37].

The line graph L(H) of a graphH is the graphwhose vertices are the edges ofH and such that, for every two different edges
e and f of H , ef is an edge of L(H) if and only if e and f share an endpoint. A graph G is a line graph [51] if it is the line graph
of some graph H; if so, H is called a root graph of G. Perfectness of line graphs (or, equivalently, of their complements) was
studied in [42,43]. In [8], clique-perfectness of line graphs was characterized by forbidden induced subgraphs, as follows
(see Fig. 1 for a 3-sun).

Theorem 1.3 ([8]). If G is a line graph, then G is clique-perfect if and only if G contains no induced 3-sun and has no odd hole.
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