# On the extremal values of the eccentric distance sum of trees 

Lianying Miao*, Qianqiu Cao, Na Cui, Shiyou Pang<br>School of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, PR China

## ARTICLE INFO

## Article history:

Received 7 June 2014
Received in revised form 27 January 2015
Accepted 30 January 2015
Available online 25 February 2015

## Keywords:

The eccentric distance sum
Maximum degree
Domination number
Independence number


#### Abstract

Let $G$ be a simple connected graph. The eccentric distance sum (EDS) of $G$ is defined as $\xi^{d}(G)=\sum_{v \in V} \varepsilon_{G}(v) D_{G}(v)$, where $\varepsilon_{G}(v)$ is the eccentricity of the vertex $v$ and $D_{G}(v)=$ $\sum_{u \in V} d_{G}(u, v)$ is the sum of all distances from the vertex $v$. In this paper, the trees having the maximal EDS among $n$-vertex trees with maximum degree $\Delta$ and among those with domination number 3 are characterized. The trees having the maximal or minimal EDS among $n$-vertex trees with independence number $\alpha$ and the trees having the maximal EDS among $n$-vertex trees with matching number $m$ are also determined.


© 2015 Elsevier B.V. All rights reserved.

## 1. Introduction

In this paper, all graphs $G=(V, E)$ are finite, simple and undirected. For $x \in V, N_{G}(x)$ (or $N(x)$ ) is the set of vertices adjacent to $x$, and the degree of $x$, denoted by $d_{G}(x)$ (or $d(x)$ ) is $\left|N_{G}(x)\right|$ (or $\left.|N(x)|\right)$. We call $u$ a leaf if $d(u)=1$. We use $\Delta(G)$ and $\delta(G)$ (or $\Delta$ and $\delta$ ) to denote the maximum degree and minimum degree of $G$, respectively. A vertex of degree $k$ is called a $k$-vertex. If $u v \in E$, we call $u$ (or $v$ ) a neighbor of $v$ (or $u$ ). We call $v$ a pendent neighbor of $u$ if $u v \in E$ and $d(v)=1$. For $u, v \in V$, the distance $d_{G}(u, v)$ is defined as the length of the shortest path between $u$ and $v$ in $G_{G}(v)$ denotes the sum of all distances from $v$. The eccentricity $\varepsilon(v)$ of a vertex $v$ is the maximum distance from $v$ to any other vertex. The centre of a graph is a vertex of minimum eccentricity. For $W \subseteq V, G-W$ denotes the graph obtained from $G$ by deleting the vertices in $W$ together with their incident edges. If $W=\{w\}$, we just write $G-w$ for $G-\{w\}$. If $U \subseteq V$, then $G[U]$ denotes the graph on $U$ whose edges are precisely the edges of $G$ with both ends in $U$. Let $S_{n}, P_{n}$ and $K_{n}$ be a star, a path and a complete graph on $n$ vertices respectively. We use $l(P)$ to denote the length of a path $P$. For a real number $x$, we use $\lfloor x\rfloor$ to denote the greater integer no greater than $x$ and use $\lceil x\rceil$ to denote the least integer no less than $x$.

A subset $S$ of $V$ is called a dominating set of $G$ if for every vertex $v \in V \backslash S$, there exists a vertex $u \in S$ such that $v$ is adjacent to $u$. The domination number of $G$, denoted by $\gamma(G)$, is defined as the minimum cardinality of dominating sets of $G$. For a connected graph $G$ of order $n$, Ore [20] obtained that $\gamma(G) \leq \frac{n}{2}$.

A subset $M$ of $E(G)$ is called a matching of $G$ if no two edges are adjacent in $G$. The matching number of $G$, denoted by $\alpha^{\prime}(G)$, is defined as the maximum cardinality of matching sets of $G$.

A subset $S$ of $V(G)$ is called an independent set of $G$ if no two vertices from $S$ are adjacent in $G$. The independence number of $G$, denoted by $\alpha(G)$, is defined as the maximum cardinality of independent sets of $G$. It is known that for a bipartite graph $G$ of order $n$ and with $\delta>0, \alpha^{\prime}(G)+\alpha(G)=n$. All trees are bipartite, hence the equation holds for the theorems in Section 5 .

A single number that can be used to characterize some property of the graph of a molecule is called a topological index. The topological index is a graph theoretic property that is preserved by isomorphism. The chemical information derived through the topological index has been found useful in chemical documentation, isomer discrimination, structure-property

[^0]

Fig. 1. $\rho$ transformation.
correlations, etc. [1]. The properties of many topological indices such as the Wiener index [3], the degree distance index, the eccentric connectivity index [21,4,9,15,16,19], the eccentric distance sum [10] and so on are established and used as molecular descriptors [11,12]. Some results on the domination number can be found in [2,5-7,22,23].

The graph invariant-eccentric distance sum (EDS) was introduced by Gupta, Singh and Madan [10], which was defined as

$$
\xi^{d}(G)=\sum_{v \in V} \varepsilon_{G}(v) D_{G}(v)
$$

The eccentric distance sum can also be defined as

$$
\xi^{d}(G)=\sum_{u, v \in V}\left(\varepsilon_{G}(u)+\varepsilon_{G}(v)\right) d_{G}(u, v)
$$

Many researchers have studied the eccentric distance sum of trees. Yu, Feng and Ilić [24] characterized the trees with the minimal EDS among the $n$-vertex trees of a given diameter. Li, Zhang, Yu, Feng [18] identified the trees with the minimal and second minimal eccentric distance sums among the $n$-vertex trees with matching number $q$ and characterized the extremal tree with the second minimal eccentric distance sum among the $n$-vertex trees of a given diameter. They also determined the trees with the third and fourth minimal eccentric distance sums among the $n$-vertex trees. Geng, Li and Zhang [8] characterize the trees with the minimal EDS among $n$-vertex trees with domination number $\gamma$, and determine the trees with the maximal EDS among $n$-vertex trees with domination number $\gamma$ satisfying $n=k \gamma$, where $k=2$, 3 , $\frac{n}{2}$. They also identify the trees with the minimal and the maximal EDS among the $n$-vertex trees with $k$ leaves. Other results about the EDS of graphs can also be found in [13,14,17].

In this paper, we continue to study the eccentric distance sum of trees. The trees having the maximal EDS among $n$-vertex trees with maximum degree $\Delta$ and among those with domination number 3 are characterized. The trees having the maximal or minimal EDS among $n$-vertex trees with independence number $\alpha$ and the trees having the maximal EDS among $n$-vertex trees with matching number $m$ are also determined.

## 2. Preliminaries

In this paper, we will use two graph transformations $A_{1}$ and $A_{2}$ posed in [14] and [8], respectively.
$A_{1}$ : Let $T$ be a tree of order $n>3$ and $e=u v$ be a nonpendent edge. Suppose that $T-e=T_{1} \cup T_{2}$ with $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$. A new tree $T_{0}$ is obtained by identifying the vertex $u$ of $T_{1}$ with vertex $v$ of $T_{2}$ and attaching a leaf to the $u(=v)$. $T_{0}$ is said to be obtained by running an edge-growing transformation of $T$ (on edge $e=u v$ ), or e.g.t of $T$ (on edge $e=u v$ ) for short.

Let $T$ be a tree and $u v$ be a pendent edge with $d_{T}(v)=1$ and $d_{T}(u) \geq 3$. Suppose $u w \in E(T)$ and $w \neq v$. Let $T_{0}=T-\{u w\}+\{v w\}$. Then $T_{0}$ is said to be obtained by running converse of e.g.t of $T$ on $u w$.

Lemma 2.1 ([14]). Let $T$ be a tree of order $n>3$ and $e=u v$ be a nonpendent edge of $T$. If $T_{0}$ is a tree obtained from $T$ by running one step of e.g.t (on edge $e=u v$ ), then we have $\xi^{d}\left(T_{0}\right)<\xi^{d}(T)$.
$A_{2}$ : Let $T$ be an arbitrary tree rooted at a center vertex and let $v$ be a vertex of degree $m+1(m \geq 2)$. Suppose that $w$ is adjacent to $v$ with $\varepsilon_{T}(v) \geq \varepsilon_{T}(w)$ and that $T_{1}, T_{2}, \ldots, T_{m}$ are subtrees under $v$ with root vertices $v_{1}, v_{2}, \ldots, v_{m}$ where $N_{T}(v)=\left\{w, v_{1}, v_{2}, \ldots, v_{m-1}, v_{m}\right\}$ and $T_{m}$ is actually a path. Let $T^{\prime}=T-\left\{v v_{1}, v v_{2}, \ldots, v v_{m-1}\right\}+\left\{w v_{1}, w v_{2}, \ldots, w v_{m-1}\right\}$. We say that $T^{\prime}$ is a $\rho$ transformation of $T$ and denote it by $T^{\prime}=\rho(T, v)$. See Fig. 1 .

Lemma 2.2 ([14]). Let $T^{\prime}$ be a $\rho$ transformation of $T$ defined as above, one has $\xi^{d}(T) \geq \xi^{d}\left(T^{\prime}\right)$. The equality holds if and only if $\varepsilon_{T}(v)=\varepsilon_{T}(w)$ and $T[S]$ is one of the longest paths in $T$, where $S=V\left(G_{0}\right) \cup V\left(T_{m}\right) \cup\{v\}$ and $G_{0}$ is the graph obtained from $T$ (or $T^{\prime}$ ) by deleting $V\left(T_{1}\right) \cup V\left(T_{2}\right) \cup \cdots \cup V\left(T_{m}\right) \cup\{v\}$.

A spider is a tree with at most one vertex of degree more than 2, called the hub of the spider (if there is no vertex of degree more than two, then any vertex can be the hub). A leg of a spider is a path from the hub to one of its leaves. Let $S\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a spider with $k$ legs $P^{1}, P^{2}, \ldots, P^{k}$ for which the lengths $l\left(P^{i}\right)=a_{i}(i=1,2, \ldots, k)$. It holds that

# https://daneshyari.com/en/article/418929 

Download Persian Version:
https://daneshyari.com/article/418929

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail address: miaolianying@cumt.edu.cn (L. Miao).
    http://dx.doi.org/10.1016/j.dam.2015.01.042
    0166-218X/® 2015 Elsevier B.V. All rights reserved.

