Wheel and star-critical Ramsey numbers for quadrilateral

Yali $\mathrm{Wu}{ }^{\text {a }}$, Yongqi Sun ${ }^{\text {a,* }}$, Stanisław P. Radziszowski ${ }^{\text {b }}$
${ }^{\text {a Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, }}$ Beijing 100044, PR China
${ }^{\mathrm{b}}$ Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623, USA

ARTICLE INFO

Article history:

Received 9 May 2013
Received in revised form 10 January 2014
Accepted 5 January 2015
Available online 29 January 2015

Keywords:

Ramsey number
Wheel
Cycle
Hamiltonian graph

Abstract

The star-critical Ramsey number $r_{*}\left(H_{1}, H_{2}\right)$ is the smallest integer k such that every red/blue coloring of the edges of $K_{n}-K_{1, n-k-1}$ contains either a red copy of H_{1} or a blue copy of H_{2}, where n is the graph Ramsey number $R\left(H_{1}, H_{2}\right)$. We study the cases of $r_{*}\left(C_{4}, C_{n}\right)$ and $R\left(C_{4}, W_{n}\right)$. In particular, we prove that $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geq 4$, obtain a general characterization of Ramsey-critical (C_{4}, C_{n})-graphs, and establish the exact values of $R\left(C_{4}, W_{n}\right)$ for 9 cases of n between 18 and 44 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph $G=(V(G), E(G))$, we denote the order of G by $p(G)=|V(G)|$. The Ramsey arrowing operator \rightarrow is a logical predicate, which holds for graphs G, H_{1} and H_{2}, written $G \rightarrow\left(H_{1}, H_{2}\right)$, if and only if for all partitions $E(G)=E_{1} \cup E_{2}$ into two sets (colors) E_{1} contains H_{1} or E_{2} contains H_{2}. The Ramsey number $R\left(H_{1}, H_{2}\right)$ is the smallest n such that $K_{n} \rightarrow\left(H_{1}, H_{2}\right)$. Any edge 2-coloring witnessing $K_{n} \nrightarrow\left(H_{1}, H_{2}\right)$ will be called an $\left(H_{1}, H_{2} ; n\right)$-coloring, which can be seen as a graph not containing H_{1} and without H_{2} in the complement. The star-critical Ramsey number $r_{*}\left(H_{1}, H_{2}\right)$ is the smallest k such that $K_{n}-K_{1, n-k-1} \rightarrow\left(H_{1}\right.$, $\left.H_{2}\right)$, where $n=R\left(H_{1}, H_{2}\right)$ [12].

If $V(G) \cap V(H)=\emptyset$, then the graph $G+H$ on vertices $V(G) \cup V(H)$ has the edges $E(G) \cup E(H) \cup\{u v: u \in V(G), v \in V(H)\}$. For $S \subseteq V(G), G[S]$ denotes the subgraph induced in G by S, and $G \backslash S=G[V(G) \backslash S]$. For $v \in S$, let $N_{G[S]}(v)=\{u: u \in$ $S \wedge u v \in E(G)\}$ and $d_{G[S]}(v)=\left|N_{G[S]}(v)\right|$. If $S=V(G)$, we simply write $N(v), d(v)$, and $N[v]=N(v) \cup\{v\}$. $\delta(G)$ and $\Delta(G)$ are the minimum and maximum degrees in G, respectively. $\alpha(G)$ denotes the order of the maximum independent set in G, $\kappa(G)$ is the vertex connectivity of $G . P_{k}$ is the path on k vertices, C_{k} is the cycle of length k, T_{k} is a k-vertex tree, and W_{k+1} is the wheel graph, where a hub is connected by k spokes to C_{k}. $K_{m, n}$ is the complete $m \times n$ bipartite graph, in particular $K_{1, n}$ is the star graph. K_{n}^{m} is the complete m-partite graph with each part of order n.

It is known that $R\left(C_{4}, W_{4}\right)=10, R\left(C_{4}, W_{5}\right)=9$ and $R\left(C_{4}, W_{6}\right)=10$ (cf. [18]). Tse [21] determined the values of $R\left(C_{4}, W_{m}\right)$ for $7 \leq m \leq 13$. Dybizbański and Dzido [7] proved that $R\left(C_{4}, W_{m}\right)=m+4$ for $14 \leq m \leq 16$, and $R\left(C_{4}, W_{q^{2}+1}\right)$ $=q^{2}+q+1$ for prime powers $q \geq 4$. They also gave an upper bound on $R\left(C_{4}, W_{m}\right)$ for $m \geq 11$. The concept of star-critical

[^0]

Fig. 1. Structure of graphs in \mathcal{F}_{j} for $1 \leq j \leq 4$.
Ramsey numbers was introduced by Hook and Isaak [12]. They proved that $r_{*}\left(C_{4}, C_{3}\right)=5, r_{*}\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1$, $r_{*}\left(n K_{2}, m K_{2}\right)=m$ for $n \geq m$, and $r_{*}\left(C_{4}, P_{n}\right)=3$ for $n \geq 3$.

Recall that $R\left(C_{4}, C_{n}\right)=n+1$ for $n \geq 6[14]$. The main results of this paper are as follows:

Theorem 1. For all $n \geq 6$, any $\left(C_{4}, C_{n} ; n\right)$-graph is in one of the graph sets $\mathcal{F}_{i}, 1 \leq i \leq 4$, as in Definition 4 .
Theorem 2. $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geq 4$.
Theorem 3. $R\left(C_{4}, W_{m}\right)=\left\{\begin{array}{ll}m+4, & \text { for } 18 \leq m \leq 21, \\ m+5, & \text { for } m=27, \\ m+6, & \text { for } 35 \leq m \leq 37, \\ m+7, & \text { for } m=44 .\end{array}\right.$ and

Definition 4. Graph sets $\mathcal{F}_{j}, 1 \leq j \leq 4$, are defined on vertices $\left\{v, x_{1}, \ldots, x_{n-2}, y\right\}$. We present them in Fig. 1. In each case the distinguished vertex $v \in V\left(F_{j}^{i}\right)$ is of maximum degree, $X=N(v)$, and X induces i disjoint edges $i K_{2}$ in F_{j}^{i}. We describe these graphs in detail as follows.
(1) $F_{1}^{i} \in \mathcal{F}_{1}, d(v)=n-2$, and $N(y)=\emptyset$;
$F_{1}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2}$ for $0 \leq i \leq(n-2) / 2$.
(2) $F_{2}^{i} \in \mathcal{F}_{2}, d(v)=n-2, N(y)=\left\{x_{n-2}\right\}$, and $d_{F_{2}^{i}[X]}\left(x_{n-2}\right)=0$;
$F_{2}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2}$ for $0 \leq i \leq(n-3) / 2$.
(3) $F_{3}^{i} \in \mathcal{F}_{3}, d(v)=n-2, N(y)=\left\{x_{n-2}\right\}$, and $d_{F_{3}^{i}[X]}\left(x_{n-2}\right)=1$; $F_{3}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2}$ for $1 \leq i \leq(n-2) / 2$.
(4) $F_{4}^{i} \in \mathcal{F}_{4}, y=x_{n-1}$, and $d(v)=n-1$;
$F_{4}^{i}[X]=(n-2 i-1) K_{1} \cup i K_{2}$ for $0 \leq i \leq(n-1) / 2$.
In all cases (i, j), one can easily see that the graphs F_{j}^{i} have no C_{4}. For the complements of F_{j}^{i}, since v is just adjacent to y in each graph of \mathcal{F}_{j} for $1 \leq j \leq 3$, and v is an isolated vertex in each graph of \mathcal{F}_{4}, their complements have no C_{n}. Thus all of the graphs F_{j}^{i} are $\left(C_{4}, C_{n} ; n\right)$-graphs.

Some of the known results which will be used in our proofs are summarized in the next two theorems.
Theorem 5 ([14]). $R\left(C_{4}, C_{n}\right)= \begin{cases}7, & \text { for } n=3,5, \\ 6, & \text { for } n=4, \text {, and } \\ n+1, & \text { for } n \geq 6 .\end{cases}$
Theorem 6 ([1-3,6]). Let G be any graph of order $n \geq 3$. If G satisfies any of the following conditions, then it is Hamiltonian:
(a) $\delta(G) \geq\lceil n / 2\rceil$,
(b) For all $i<n / 2$, either $d_{i} \geq i+1$ or $d_{n-i} \geq n-i$, where $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ is the degree sequence,
(c) $\alpha(G) \leq \kappa(G)$, or
(d) G is 2 -connected and $\sigma_{3}(G) \geq n+\kappa(G)$, where

$$
\sigma_{3}(G)=\min \left\{\sum_{i=1}^{3} d\left(v_{i}\right):\left\{v_{1}, v_{2}, v_{3}\right\} \text { is an independent set in } G\right\} .
$$

https://daneshyari.com/en/article/418934

Download Persian Version:
https://daneshyari.com/article/418934

Daneshyari.com

[^0]: T Supported by NSFC (60973011, 61272004), and the Fundamental Research Funds for the Central Universities (2013YJS033).
 से

 * Corresponding author.

 E-mail addresses: yqsun@bjtu.edu.cn (Y. Sun), spr@cs.rit.edu (S.P. Radziszowski).

