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Abstract

We consider vertex coloring of an acyclic digraph �G in such a way that two vertices which have a common ancestor in �G receive
distinct colors. Such colorings arise in a natural way when bounding space for various genetic data for efficient analysis. We discuss
the corresponding down-chromatic number and derive an upper bound as a function of D( �G), the maximum number of descendants
of a given vertex, and the degeneracy of the corresponding hypergraph. Finally, we determine an asymptotically tight upper bound
of the down-chromatic number in terms of the number of vertices of �G and D( �G).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this article is to discuss a special kind of vertex coloring for acyclic digraphs, where vertices with a
common ancestor must receive distinct colors. We discuss some properties of such colorings, similarity and differences
with strong hypergraph colorings, and derive an upper bound which, in addition, yields an efficient coloring procedure.

Digraphs representing various biological phenomena and knowledge are ubiquitous in the life sciences and in drug
discovery research, e.g. the gene ontology digraph maintained by the Gene Ontology Consortium [7]. An overview of
several projects relating to indexing of semistructured data (i.e. acyclic digraphs) can be found in [1]. In these biological
digraphs it is important to be able to access the ancestors of nodes in a fast and efficient manner.

Consider the problem of finding a representation of an acyclic digraph in a database to allow for fast access to the
set of ancestors of a given node. The ancestors of a node are its in-neighbors in the transitive closure of the digraph. If
the digraph is sparse and shallow, the transitive closure is also sparse. Thus, an adjacency matrix representation would
be neither efficient nor fast. On the other hand, a matrix has the advantage of corresponding nicely to the relational
representation of modern databases. In a database relation that corresponds to an adjacency matrix, the non-empty
elements in each column correspond to the in-neighbors of the node indexing that column. This vertex set can then be
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Table 1
An example for n = 6

combined by joins with other tables that are also indexed by vertices, giving an effective language of querying based on
graphical properties. Thus, it would be preferable to find a representation that both has a matrix structure, yet consists
of relatively small rows.

One compact matrix representation would be to store the adjacency lists in compacted array form, where a list
with k elements is stored in the first k array elements. In this case, however, there is no easy way of accessing
all the edges entering a given vertex. While this could be alleviated by storing the inverted adjacency matrix, note
that in the context of database access, rows are conceptually different from columns. Instead, we seek a compacted
representation where all in-edges of a given node are stored in the same column. We say that a many-to-one mapping
of vertices to columns that preserves adjacency lists, has the AC-property. By recording the mapping of nodes to their
respective column storing their in-neighbors, one obtains the same desirable properties of adjacency matrices in the
context of a relational database. If the graph is sparse, the possibilities of storage reduction are significant. The actual
improvement is related to the number of colors needed in a certain coloring of the digraph, which we now briefly
discuss.

A proper down-coloring of a digraph is a vertex coloring where vertices with a common ancestor receive different
colors. The down-chromatic number of a digraph is the minimum number of colors in a down-coloring of the digraph. In
a compacted matrix representation of the transitive closure of a digraph, we assign multiple vertices to the same column,
but in such a way that their in-adjacency lists must be disjoint. Two vertices have disjoint sets of in-neighbors in the
transitive closure if, and only if, they have no common ancestor. Therefore, a down-coloring of a digraph corresponds
to a valid compacted representation of its transitive closure, and the down-chromatic number is the minimum number
of columns needed in such a representation.

Example. Consider the digraph �G, on n = 6 vertices representing genes, where a directed edge from one vertex to a
second one indicates that the first gene is an ancestor of the second gene.

V ( �G) = {g1, g2, g3, g4, g5, g6},
E( �G) = {(g1, g4), (g1, g5), (g2, g4), (g2, g6), (g3, g5), (g3, g6)}.

In the adjacency matrix representation of this 6 node digraph, we assign a column to each vertex gi . As we see in
the left diagram of Table 1, most of the entries of this 6 × 6 matrix are empty. By reducing the number of columns
in such a way that the AC-property still holds, we obtain a smaller and more compact 6 × 3 matrix representation as
seen on the right diagram of Table 1. There, the ith row still contains the descendants of gi and the ancestors of gi are
those gj ’s whose rows gi appears in. Note that (i) each gi appears in exactly one column and (ii) two genes appear
in the same column only if their sets of ancestors are disjoint. Here we can view the column numbers 1, 2, and 3 as
distinct colors assigned to each vertex. Note further that in this example the transitive closure of �G is simply �G itself.
An explicit example of how such a coloring can speed up queries in the gene ontology digraph can be found in the
appendix of [6].

Hence, the following two questions regarding such colorings, one computational and the other theoretical, are
quite natural: (1) For a given digraph (of no particular structure!) how can we assign reasonably few colors to the
vertices/columns efficiently, and (2) in general, how large can the discrepancy theoretically be between the actual
minimum number of colors needed and the obvious lower bound of needed colors?
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