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a b s t r a c t

An interconnection network is usually modeled as a graph, in which vertices and
edges correspond to processor and communication links, respectively. Connectivity is an
important measurement for the fault tolerant in interconnection network. Two vertices
is maximally local-connected if the maximum number of internally vertex-disjoint paths
between them equals the minimum degree of these two vertices. In this paper, we show
that an n-dimensional Bubble-sort star graph is (2n − 5)-fault-tolerant maximally local-
connected and is also (2n − 6)-fault-tolerant one-to-many maximally local-connected.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is usually modeled as an undirected graph, in which vertices and edges correspond to
processor and communication links, respectively. Let G = (V (G), E(G)) be a graph with the vertex set V (G) and edge set
E(G). For a vertex set X , N(X) is the neighbor of X , and for a subgraph H of G, let NH(X) = N(X) ∩ V (H). In particular, when
X = {x}, we setNH(x) = NH({x}) and dH(x) = |NH(x)|. A singleton ofG is a vertex v with dG(v) = 0. Let∆(G) and δ(G) denote
themaximumandminimumdegree ofG, respectively. For X, Y ⊆ V (G), we denote by EG(X, Y ) the set of edges ofGwith one
end in X and other end in Y , and by eG(X, Y ) their number. In particular, when Y = V (G)\X , we set EG(X) = EG(X, V (G)\X).
The distance between two vertices u and v, denoted by dG(u, v), is the length of the shortest path from u to v. Amatching is
a set of pairwise nonadjacent edges in a graph. The induced subgraph obtained by deleting the vertices of F ⊆ V (G) from G
is denoted by G − F . We use Bondy and Murty [2] for terminology and notation not defined here.

The connectivity of a graph G, denoted by κ(G), is defined as the minimum number of vertices whose removal results in
a disconnected or trivial graph, which is a major parameter widely describing the connection status of a graph. A nontrivial
graph G is k-connected if κ(G) ≥ k. It is known that κ(G) ≤ δ(G). A graph G is maximally connected if κ(G) = δ(G). The
local-connectivity between two distinct vertices x and y is the minimum number of internally disjoint paths between x and
y. As to local-connectivity, there is a classical Menger’s Theorem (see [10]).

Theorem 1.1 (Menger’s Theorem). In any graph G with (x, y) ∉ E(G), the maximum number of pairwise internally disjoint
xy-paths is equal to the minimum number of vertices in an xy-vertex-cut.

With the continuous increasing in network size, routing in networkswith faults has become unavoidable. Fault-tolerance
is especially important for interconnection network, which is directly related to the connectivity of the corresponding graph.
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An efficient routing can be achieved by vertex-disjoint paths, which can not only avoid communication bottlenecks, thus
increase the efficiency ofmessage transmission, but also provide alternative paths in case of vertex failures. For themost part,
while the number of faulty vertices is greater than the connectivity of a network, the network with faulty vertices remains
connected, or there exists a large connected component (see [4]), or there exist some large components (see [3,8,9]). Many
measures on fault tolerance of networks are related to the maximal size of the connected components of networks with
faulty vertices. To estimate themaximally connected component of the networkwith the faulty vertices is essential (see [1]).
In general, a remaining large fault-free connected component also increases fault-tolerance. Yang, Evans and Megson
[16–18] continually presented some results on the maximally connected component of the n-dimensional hypercube. Oh
and Chen (see [12,11]) firstly applied the following concept on hypercubes and star graphs.

Definition 1.2. A pair of vertices x and y is maximally local-connected, if there exists min{dG(x), dG(y)} vertex-disjoint
paths between x and y in G. A graph G is maximally local-connected if each pair of vertices x, y of G are connected by
min{dG(x), dG(y)} vertex-disjoint paths between x and y in G.

Definition 1.3. A graph G is f -fault-tolerant maximally local-connected if each pair of vertices x, y of G − F are connected by
min{dG−F (x), dG−F (y)} vertex-disjoint paths for F ⊂ V (G) with |F | ≤ f .

The above concept of local connectivity can be referred as a one-to-one version of connectivity. In classical theory, there
is a one-to-many version of connectivity.

Given a vertex x and a set U of vertices, an (x,U)-fan of size k is a set of k-paths from x to U such that any two of them
share only one vertex x, where |U| ≥ k.

Let G be a graph and F ⊂ V (G). A set of vertices U in G − F is called to be a conditional terminal set with respect to x if
|U| ≤ dG−F (x) and {v} ∪ NG−F (v) ⊈ U for each v ∈ U . There is a classical theorem about one-to-many connectivity which
was provided by Dirac in [2].

Theorem 1.4 ([2]). A graph is k-connected if and only if it has at least k+1 vertices and, for every choice of (x,U) with |U| ≥ k,
has an (x,U)-fan of size k.

Shih and Tan [14] extended the one-to-one version of connectivity to one-to-many version of connectivity.

Definition 1.5. A graph G is one-to-many f -fault-tolerant maximally local-connected, if given any F ⊂ V (G) with |F | ≤ f and
x ∈ V (G − F), there is a set of |U| paths from x to U in G − F such that each pair of them share only the vertex x, for each
conditional terminal set U with |U| ≤ dG−F (x).

About the property of the maximal local-connectivity, there are many results (see [6,10–13,15,16,19]). Oh and Chen [12]
showed that the n-star graph is (n − 3)-fault-tolerant maximally local-connected. Shih and Tan [14] showed that an
n-dimensional Bubble-sort graph is (n − 3)-fault-tolerant maximally local-connected and also (n − 1)-fault-tolerant one-
to-many maximally local-connected. Shih et al. [13] showed that n-dimensional hypercube-like networks is (n − 2)-fault-
tolerant maximally local-connected.

In this paper, we first present some results on the maximally connected component of the Bubble-sort star graph, and
then study the Menger property on the Bubble-sort star graph, which is the merger [7] of the Bubble-sort graph and the
star graph. (Originally, the merger graph is used to achieve the edge fault tolerance [7].) Clearly, the star graph owns many
attractive properties except the embeddability as well as the Bubble-sort graph is simple and possesses some desirable
features except the long diameter. So we may expect that the Bubble-sort star graph will combine the advantages of both
graphs and surmounts their individual flaws (see [5]).

We now introduce the Bubble-sort star graph. Let a, b be two integers, and denote [a, b] = {x : x is an integer with a ≤

x ≤ b}. Let Sn = [1, n], and let Perm(Sn) denote the set of permutations over Sn. We denote ‘‘◦’’ to be an operation such that
u = v ◦ (i, j), for any u = x1x2 · · · xj · · · xi · · · xn, v = x1x2 · · · xi · · · xj · · · xn ∈ Perm(Sn). The Bubble-sort star graph, denoted
by BSn = (V (BSn), E(BSn)), is defined with V (BSn) = Perm(Sn) and E(BSn) = {(u, v) : v = u ◦ (1, i) for i ∈ [2, n], or v =

u ◦ (i − 1, i) for i ∈ [3, n], u, v ∈ V (BSn)} (see [5]). Clearly, BSn is (2n − 3)-regular and vertex symmetry. Moreover, it
is Hamiltonian and bipartite. BSn is partitioned into n subgraphs BS1n, BS

2
n, . . . , BS

n
n, where each BSin has a fixed i in the last

position of the label strings and each BSin is isomorphic to BSn−1 for i ∈ [1, n]. Fig. 1 illustrates BS2, BS3 and BS4, respectively.

Note that BS3 ∼= K3,3 and one can deduce many properties of BS3 easily. Hence we begin by discussing BSn for n ≥ 4.
Here, we mainly show the following results.

Theorem 1.6. For n ≥ 4, the n-dimensional Bubble-sort star graph with a set F of at most 4n − 9 vertices removed has a
component of order ≥ n! − |F | − 2.

Theorem 1.7. For n ≥ 4, the n-dimensional Bubble-sort star graph is (2n − 5)-fault-tolerant maximally local-connected.

Theorem 1.8. For n ≥ 4, the n-dimensional Bubble-sort star graph is (2n − 6)-fault-tolerant one-to-many maximally local-
connected.
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