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a b s t r a c t

Counting independent sets is a #P-complete problem for general graphs but solvable in
polynomial time for interval and permutation graphs. This paper develops some polyno-
mial time algorithms for counting independent sets, maximal independent sets, and inde-
pendent perfect dominating sets in a tolerance graph, which is a common generalization
of interval and permutation graphs. No algorithm for solving those problems for tolerance
graphs is currently available.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph with set of vertices V and set of edges E. An independent set (abbr. IS) in a graph
G is a subset W of V such that no two vertices of W are adjacent. The maximal independent set (abbr. MIS) in a graph is
an IS that is not a subset of any other IS in the graph. A dominating set in a graph G is a subset D of V such that every
vertex that is not in D is adjacent to at least one vertex in D. An independent dominating set in a graph G is a set of vertices
of G that is both independent and dominating in G. Clearly, every dominating set that is independent must be maximal
independent, so independent dominating sets are identically the maximal independent sets. An independent dominating
setD is an independent perfect dominating set (abbr. IPDS) if every vertex that is not inD is adjacent to exactly one vertex inD.

This paper investigates the problems that are associated with the numbers of ISs in a graph. Provan and Ball [12]
confirmed that counting ISs is #P-complete for general graphs and remains so even for bipartite graphs. Valiant [14] defined
the class of #P-complete problems. The class of #P problems consists of problems that involve counting access computations
for problems in NP, while the class of #P-complete problems includes the hardest problems in #P . As is widely known, all
exact algorithms for solving these problems have exponential time complexity, and thus efficient exact algorithms for this
class of problems are unlikely to exist. However, this complexity can be reduced by considering only a restricted subclass of
#P-complete problems.

One very important special class of graphs is the class of intersection graphs. Let S be a finite family of non-empty sets.
A graph G is an intersection graph for S if a one-to-one correspondence exists between the vertices of G and the sets of S
such that two vertices are adjacent if and only if their corresponding sets in S have a non-empty intersection. The class of
intersection graphs has various important subclasses. Some of them are briefly described below.

Chordal graphs are graphs in which every cycle with a length of at least four has a chord. Gavril [4] proved that chordal
graphs are the intersection graphs of a family of subtrees in a clique tree. A tree T is a clique tree for a graph G if each node in
T corresponds to amaximal clique in G and two nodes in T can be connected if correspondingmaximal cliques intersect. For
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v ∈ V , let Tv be the set of all maximal cliques of G that contain vertex v. Therefore, G is a chordal graph if and only if Tv is a
subtree in a clique tree T for every v ∈ V . In this way, four subclasses of chordal graphs can be defined [10]. Undirected path
graphs are the intersection graphs of a family of undirected subpaths in a clique tree.Directed path graphs are the intersection
graphs of a family of directed subpaths in a directed clique tree. Rooted directed path graphs are the intersection graphs of
a family of directed subpaths in a rooted directed clique tree. A tree is called a rooted directed tree if one of its nodes has
been designated as the root, and the edges are naturally orientated away from the root. Interval graphs are rooted directed
path graphs in which the clique tree is itself a path. Interval graphs are usually defined as the intersection graphs of a family
of intervals on a line. A graph G = (V , E) is an interval graph if its vertices can be put into one-to-one correspondence with
a set I = {Iv|v ∈ V } of closed intervals on a line such that two vertices are adjacent in G if and only if the corresponding
intervals have a non-empty intersection; that is, (u, v) ∈ E if and only if |Iu ∩ Iv| > 0.

A permutation graph has an intersection model that consists of straight lines (one per vertex) between two parallel lines.
Trapezoid graphs are the intersection graphs of a family of trapezoids (one per vertex) between two parallel lines. If every
trapezoid is a line, then the intersection graph is a permutation graph. Similarly if every trapezoid is a rectangle, then the
intersection graph is an interval graph. Thus, trapezoid graphs properly include both interval and permutation graphs. A
co-comparability graph is the complement of a comparability graph. Co-comparability graphs are the intersection graphs of
a family of curves (one per vertex) between two parallel lines. Corneil and Kamula [3] revealed that the class of trapezoid
graphs is included in the class of co-comparability graphs.

A graph G = (V , E) is a tolerance graph if there exist a set I = {Iv|v ∈ V } of closed intervals on a line and a set T = {tv|v ∈
V } of positive real numbers, called tolerances, that satisfy the condition (u, v) ∈ E if and only if |Iu ∩ Iv| ≥ min{tu, tv}. The
pair ⟨I, T⟩ is also called the tolerance representation of G. A vertex v in a tolerance graph is called a bounded vertex, if tv ≤ |Iv|.
Otherwise, if tv > |Iv|, v is called an unbounded vertex. A tolerance graph G is called a bounded tolerance graph, if all vertices
of G are bounded. Notably, a tolerance graph with all tv = c , where c is a fixed positive constant, is exactly an interval graph
and a tolerance graph is exactly a permutation graph if all tv = |Iv| in its tolerance representation. Therefore, both interval
graphs and permutation graphs are subclasses of bounded tolerance graphs. Every bounded tolerance graph is known to be
a trapezoid graph [1]. However, general tolerance graphs are not included in trapezoid graphs.

Another generalization of interval graphs is the class of probe interval graphs. A graph is a probe interval graph if its
vertices correspond to intervals, but every vertex is marked as either a probe or a non-probe. Two vertices in a probe graph
are adjacent if their intervals overlap, and at least one of the vertices is a probe. Notably, every probe interval graph is a
tolerance graph when infinite tolerances are assigned to non-probes and very small tolerances are assigned to probes.

Let n and m be the number of vertices and the number of edges in a graph respectively. Okamoto, Uno and Uehara [11]
presentedO(n+m) time algorithms for counting ISs in a chordal graph, and also demonstrated that the problem of counting
MISs remains #P-complete in a chordal graph. The present authors’ recent work [8] showed that the problem of counting
MISs remains #P-complete even when restricted to directed path graphs but a further restriction to rooted directed path
graphs admits a solution in O(n3) time. Lin and Chen [7] presented O(n2) time algorithms for counting ISs and MISs in a
trapezoid graph. Lin [6] proposed O(n) time algorithms for counting ISs and MISs in an interval graph. The present authors’
earlier work [13] derived O(n2) and O(n2.3727) time algorithms for counting ISs andMISs, respectively, in a co-comparability
graph.

Fig. 1 presents the containment relations among the aforementioned intersection graphs and summarizes the above re-
sults. However, the complexity of the problems of counting ISs andMISs remains unresolved for tolerance graphs and probe
interval graphs. This paper is the first to demonstrate that these problems admit solutions in polynomial time for tolerance
graphs. This paper also reveals that the problem of counting IPDSs is still solvable in polynomial time for tolerance graphs.
Since the class of probe interval graphs is a subclass of tolerance graphs, all of these problems can be solved in polynomial
time for probe interval graphs.

2. Preliminaries

This section presents the preliminaries on which the desired algorithms depend. Consider a tolerance G = (V , E) with
tolerance representation ⟨I, T⟩. For simplicity, let V = {1, 2, . . . , n} and let B and U be the sets of bounded and unbounded
vertices in V , respectively. The following remarks are straightforward.

Remark 1. For u ∈ U and v ∈ B, (u, v) ∈ E if and only if |Iu ∩ Iv| ≥ tv .

Remark 2. For u, v ∈ U , (u, v) ∉ E.

Let a(v) and b(v) denote the left and right endpoints of interval Iv , respectively. Without loss of generality, the following
assumptions are made. No two intervals share a common endpoint and set tu = ∞ for any unbounded vertex u. The
endpoints of all intervals are labeled with distinct positive integers. The vertices from 1 to n are labeled in a manner
determined by their ascending right endpoints. That is, for two vertices i and j, b(i) < b(j) if and only if i < j.

To simplify the implementation of the algorithm, two dummy bounded vertices 0 and n+ 1 are added to graph G, where
a(0) = b(0) = 0 for vertex 0 and a(n + 1) = b(n + 1) = max{b(v)|v ∈ V } + 1 for vertex n + 1. Assume that dummy
bounded vertices 0 and n+ 1 are isolated vertices, meaning that they are disconnected from all other vertices.
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