Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

ℓ -facial edge colorings of graphs

Borut Lužar^{a,b}, Martina Mockovčiaková^{c,d,*}, Roman Soták^d, Riste Škrekovski^{a,b}, Peter Šugerek^e

^a Faculty of Information Studies, Novo mesto, Slovenia

^b Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

^c European Centre of Excellence NTIS-New Technologies for Information Society, University of West Bohemia, Pilsen, Czech Republic

^d Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia

e Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University, Košice, Slovakia

ARTICLE INFO

Article history: Received 9 October 2013 Received in revised form 13 August 2014 Accepted 9 October 2014 Available online 4 November 2014

Keywords: *l*-facial edge coloring Facial coloring Plane graph

1. Introduction

An ℓ -facial vertex coloring of a plane graph is a coloring of its vertices such that vertices at distance at most ℓ on a boundary walk of any face receive distinct colors. This type of colorings was introduced by Král', Madaras, and Škrekovski [5,6] as an extension of cyclic colorings in order to obtain some results on diagonal colorings. They showed that, for $\ell \geq 5$, $\lfloor \frac{18}{5}\ell \rfloor + 2$ colors suffice for an ℓ -facial vertex coloring of any plane graph. Moreover, they proved that every plane graph admits a 2-facial, 3-facial, and 4-facial vertex coloring with at most 8, 12, and 15 colors, respectively. The obtained bounds are not believed to be tight; in fact, the following conjecture was proposed.

Conjecture 1 (*Král'*, *Madaras and Škrekovski*). Every plane graph admits an ℓ -facial vertex coloring with at most $3 \ell + 1$ colors for every $\ell \ge 0$.

Graphs that achieve the conjectured bound are plane embeddings of K_4 , where the three edges incident to a same vertex are subdivided $\ell - 1$ times.

Conjecture 1, if true, has several interesting implications. In the case when $\ell = 1$, it implies the Four Color Theorem. If $\ell = 2$, it implies Wegner's conjecture restricted to subcubic plane graphs [8], which states that the square of every subcubic plane graph admits a proper vertex coloring with at most 7 colors.

http://dx.doi.org/10.1016/j.dam.2014.10.009 0166-218X/© 2014 Elsevier B.V. All rights reserved.

EI SEVIER

ABSTRACT

An ℓ -facial edge coloring of a plane graph is a coloring of the edges such that any two edges at distance at most ℓ on a boundary walk of any face receive distinct colors. It is conjectured that $3 \ell + 1$ colors suffice for an ℓ -facial edge coloring of any plane graph. We prove that 7 colors suffice for a 2-facial edge coloring of any plane graph and therefore we confirm the conjecture for $\ell = 2$.

© 2014 Elsevier B.V. All rights reserved.

^{*} Correspondence to: University of West Bohemia, Pilsen, Czech Republic.

E-mail addresses: borut.luzar@gmail.com (B. Lužar), mmockov@ntis.zcu.cz (M. Mockovčiaková), roman.sotak@upjs.sk (R. Soták), skrekovski@gmail.com (R. Škrekovski), peter.sugerek@tuke.sk (P. Šugerek).

Fig. 1. An example of a graph on 3ℓ vertices whose ℓ -facial chromatic index is equal to $3\ell + 1$.

Currently the best known bound for an ℓ -facial vertex coloring, for $\ell \ge 40$, is due to Havet et al. [3].

Theorem 1 (Havet et al.). Every plane graph admits an ℓ -facial vertex coloring with at most $\left|\frac{7}{2}\ell\right| + 6$ colors.

There are also several results regarding small values of ℓ . In 2006, Montassier and Raspaud [7] considered 2-facial vertex colorings of plane graphs with big girth and of K_4 -minor free graphs. In 2008, Havet et al. [4] proved that every plane graph admits a 3-facial coloring with at most 11 colors, which is just one color more as Conjecture 1 proposes.

In this paper we consider the edge version of facial colorings. An ℓ -facial edge coloring, ℓ -FEC, of a plane graph G with k colors is a mapping $\varphi : E(G) \rightarrow \{1, 2, ..., k\}$ such that for any pair of edges e and f of G at distance at most ℓ on a boundary of any face, $\varphi(e) \neq \varphi(f)$ holds. The minimum number of colors for which G admits an ℓ -facial edge coloring is the ℓ -facial chromatic index, $\chi'_{\ell-f}(G)$. Obviously, ℓ -FEC is not necessarily a proper edge coloring. In our paper we consider only connected graphs, since in the case of a disconnected graph the same colors can be used in every component.

Notice that all the upper bounds established for ℓ -facial vertex colorings hold also for the edge version. Consider the medial graph M(G) of a plane graph G, i.e. the graph with vertex set E(G), in which two vertices are connected by k edges if they correspond to adjacent edges in G incident to k common faces. Note that M(G) is also a plane graph. An ℓ -facial vertex coloring of M(G) corresponds to an ℓ -facial edge coloring of G. Thus, the problem of ℓ -facial edge coloring is just a restricted case of the problem of ℓ -facial vertex coloring. However, there exist graphs whose ℓ -facial chromatic index achieves the $3\ell + 1$ bound (see Fig. 1). Therefore, a weaker version of Conjecture 1 may be proposed.

Conjecture 2. Every plane graph admits an ℓ -facial edge coloring with at most $3 \ell + 1$ colors for every $\ell \geq 1$.

Note that the case with $\ell = 0$ is trivial. As mentioned above, the case with $\ell = 1$ is already confirmed. Our aim in this paper is to confirm that the case with $\ell = 2$ holds.

Theorem 2. Every plane graph admits a 2-facial edge coloring with at most 7 colors.

1.1. Preliminaries

Graphs considered in the paper may contain parallel edges and loops. We use the following definitions and notation. A vertex of degree k, at most k, and at least k is called a k-vertex, a k^- -vertex, and a k^+ -vertex, respectively. Similarly, a k-face, a k^- -face, and a k^+ -face is a face of size k, at most k, and at least k, respectively. By (v_1, v_2, \ldots, v_k) we denote a k-face such that the vertices v_1, v_2, \ldots, v_k appear on its boundary in the given order. We say that two faces are adjacent if they share an edge. Let U be some subset of vertices of a graph G. As usual, G[U] is a subgraph of G induced by the vertices of U.

For a given cycle *C* in a plane embedding of a graph *G* we define int(C) to be the graph induced by the vertices lying strictly in the interior of *C*. Similarly, ext(C) is the graph induced by the vertices lying strictly in the exterior of *C*. A *separating* cycle is a cycle *C* such that both int(C) and ext(C) contain at least one vertex.

Two edges are *facially adjacent* or *facial neighbors* if they are consecutive on the boundary of some face. An ℓ -*facial neighbor* of an edge is any edge at distance at most ℓ on the boundary of some face, hence, facially adjacent edges are 1-facial neighbors. In several proofs we use an operation of identifying two edges; for two nonadjacent edges $e_1 = u_1v_1$ and $e_2 = u_2v_2$ incident to the same face f of a connected plane graph (note that the vertices u_1, v_1, u_2, v_2 appear on the boundary of the face f in this order) we identify e_1 and e_2 such that u_1 is merged with v_2 and v_1 with u_2 . We say that we glue the edges e_1 and e_2 .

In a partial edge coloring, we say that a color c is *available* for an edge e, if there is no 2-facial neighbor of e colored by c. Let H be a subset of edges of a graph G. A graph $M_G^2(H)$ is a graph with the vertex set H, and two vertices x and y are adjacent in $M_G^2(H)$ if the corresponding edges are 2-facial neighbors in G; we call it the 2-medial graph of H in G. Obviously, a proper vertex coloring of $M_c^2(H)$ corresponds to a partial 2-FEC of G (where the edges of H are colored).

We say that *L* is a *list-assignment* for the graph *G* if it assigns a list L(v) of available colors to each vertex v of *G*. If *G* has a proper vertex coloring c_l such that $c_l(v) \in L(v)$ for all vertices in V(G), then *G* is *L*-colorable or c_l is an *L*-coloring of *G*. The graph *G* is *k*-choosable if it is *L*-colorable for every list-assignment *L*, where $|L(v)| \ge k$, for every $v \in V(G)$. In the sequel, we make use of the following result. By d(v) we mean the degree of a vertex v in *G*.

Download English Version:

https://daneshyari.com/en/article/418998

Download Persian Version:

https://daneshyari.com/article/418998

Daneshyari.com